量子点敏化太阳能电池:制备及光电转换性能的改进
【摘要】:太阳能的开发利用对解决能源危机和发展低碳经济都具有极其重要的意义。其中,新一代太阳能电池——量子点敏化太阳能电池由于具备高理论转换效率和低生产成本,引起了科学界的广泛关注。但迄今为止,量子点敏化太阳能电池的光电转换效率仍然远低于传统太阳能电池。
本文从材料角度出发,考虑材料本身缺陷、能级匹配及制备工艺对太阳能电池性能的影响,设计了硫化镉(CdS)和氧化锌(ZnO)纳米异质结构作为光电转换材料,采用化学浴沉积和水热法合成技术,可控合成了硫化镉量子点及氧化锌纳米线阵列,并确定了最优工艺参数。
通过研究退火处理对CdS/ZnO量子点敏化太阳能电池转换效率的影响,我们发现退火温度和CdS量子点的层数对最终太阳能电池的性能有决定性的影响。经过退火处理后的太阳能电池的光电转换效率有了显著提升,可以归因于材料对太阳光吸收能力的增强、本身缺陷的减少以及CdS/ZnO之间扩散层的形成。
通过化学浴沉积和退火处理的结合使用,在ZnO表面获得了两种不同粒径的CdS量子点。两种CdS颗粒形成I型半导体后产生的共敏化作用使得电池性能有显著的提升。此研究证实,量子点的合理搭配可以有效提升量子点敏化太阳能电池的性能。
通过水热反应,制备了由CdS量子点堆积而成的三维多孔薄膜。利用此多孔薄膜作电池光阳极材料可以形成自敏化太阳能电池并实现光电有效转换。采用电沉积技术,可以在CdS多孔膜上沉积CdSe量子点,并形成由CdSe/CdS组成的共自敏化结构,使太阳能电池的性能得到进一步提升。
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:TM914.4
【学位级别】:博士
【学位授予年份】:2010
【分类号】:TM914.4
【引证文献】 | ||
|
|||
|
【参考文献】 | ||
|
|||||||
|
【共引文献】 | ||
|
|||||||||||||
|
|
|||||||||
|
|
|||||||||||||||||||
|
【同被引文献】 | ||
|
|||||||||||||
|
|
|||||||||
|
【相似文献】 | ||
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|