支持向量机和实验正交设计的比较和应用性研究
【摘要】:针对传统统计模式识别理论中基于大数定理的假设,介绍了统计学习理论和以该理论为基础的支持向量机模式识别方法。指出了以结构风险最小化为原则的分类器设计方法,即同时兼顾分类能力最优化和经验风险最小化。支持向量机是统计学习理论的VC维理论和结构风险最小原理的具体实现,他通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优化线性分类面。
论文对支持向量机(SVM)和正交设计方法进行了比较。支持向量机在分类和回归方面广为应用,而正交设计方法在实验设计方面是非常有效的,并且在化学工业中应用广泛。本文使用了2因素、7维正交实验(干燥实验)作为例子来把支持向量机方法应用到实验设计中去。正交表是用来研究实验的最优化条件和显著因素,本文给出了支持向量机和正交实验设计的计算结果。通过两者的比较,可以看到支持向量在实验预测方面比正交设计方法效果更好。从而可知支持向量机在实验设计方面的前景广阔。
【相似文献】 | ||
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|
|
|||||||||||||||||||||
|