收藏本站
《天津大学》 2009年
收藏 | 手机打开
二维码
手机客户端打开本文

基于短期负荷预测技术的电能控制系统研究

王硕禾  
【摘要】: 针对国内外工业用电采用基础电费和实际用电费用两部制电价的情况,研究针对拥有多台大功率电弧炉的高能耗冶金企业,通过对负荷进行均衡调节,降低最大负荷,从而降低基本电费的用户需求侧能量控制系统。短期负荷预测(Short Time Load Forecasting,STLF)算法是课题的核心研究内容。 本文主要完成如下几个方面的工作: 对目前国内外同类技术研究动态进行分析,对主流短期负荷预测算法原理、方法和特点及存在的问题进行探讨。说明本研究工作的实际背景、必要性和重要意义。 针对拥有多台大功率电弧炉供电系统负荷波动大、负荷容量难以选取的问题,独创性地提出一种基于阈交理论的负荷分析、计算新算法。该算法利用负荷中超阈值数据,采用方差分析方法构造一个阈值能量函数,获得阈值选取的依据。推导出穿越强度的计算公式,利用供电系统瞬时功率对阈值的穿越强度考察已选阈值的合理性。 依据历史负荷数据,给出GM(1,1)模型最优原始数据长度的确定方法,利用残差修正、等维新息等方法对预测结果进行修正。针对灰色理论、重建相空间G.P算法和人工神经网络各自特点,独立提出一种将上述算法模型相结合的短期负荷预测算法(G-G-NN)。该算法利用灰色预测的累加生成和重建相空间的G.P算法对原始时间序列进行变换,生成规律性较强的时间序列相空间,而后利用神经网络模型进行预测。获得比使用单一神经网络模型更高的预测精度和更好的实时性。 针对所研究系统短期负荷序列既有波动性又有特殊周期性的特点,利用小波良好的时频分析特性,将不同频率混合信号分解成不同频带上的信号,在各个尺度空间上利用不同的神经网络进行预测,而后进行重构完成预测。对利用不同小波函数进行预测的效果进行了比较和讨论,实际算例表明该算法可进一步提高负荷预测的精度。 提出一种联合数据挖掘与支持向量机的短期负荷预测算法,该算法利用数据挖掘中聚类算法对原始数据进行初期处理,将海量输入进行压缩,取其聚类中心作为支持向量机预测模型的输入特征,而后利用交叉验证判别法选择SVM的最优核函数,最终完成短期负荷预测。实际算例表明,该方法可有效地克服数据有限性、不完整性及影响因素复杂性等对预测结果的影响,具有较大的实际应用价值。 完成钢厂电能控制软件的研制和调试工作,利用Visual C++编程语言编写相关软件,形成可视化的人机交互式界面,实现对钢厂负荷的预测、控制和综合管理软件。
【学位授予单位】:

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 汪峰,于尔铿,阎承山,李晓彬,刘军,刘永奇;基于因素影响的电力系统短期负荷预报方法的研究[J];中国电机工程学报;1999年08期
2 高山;短期负荷预测的神经网络实现[J];电力需求侧管理;2001年06期
3 周佃民,管晓宏,孙婕,黄勇;基于神经网络的电力系统短期负荷预测研究[J];电网技术;2002年02期
4 戴文进,付小科;基于模式识别和神经网络的电力系统短期负荷预测[J];南昌大学学报(工科版);2003年02期
5 赵宇红,赵学成,肖金凤;多层前馈神经网络在电力系统短期负荷预测中的应用[J];南华大学学报(理工版);2004年01期
6 邓培敏;陈明华;佘恬;;Elman网络在短期负荷预测中的应用[J];企业科技与发展;2009年04期
7 阙连元,叶世勋,丁剑明;开放式SCADA/EMS系统支持的在线负荷预测系统[J];电力系统自动化;1993年10期
8 赵琳;一种基于人工神经网络的短期负荷预测技术[J];山西电力技术;1998年01期
9 程旭,康重庆,夏清,沈瑜;短期负荷预测的综合模型[J];电力系统自动化;2000年09期
10 刘耀年,祝滨,曾令全,张文生,李月玲;一种利用可加性模糊系统的短期负荷预测新方法[J];电网技术;2003年08期
11 程其云,孙才新,张晓星,周湶,杜鹏;以神经网络与模糊逻辑互补的电力系统短期负荷预测模型及方法[J];电工技术学报;2004年10期
12 张昊,吴捷,郁滨;电力负荷的模糊预测方法[J];电力系统自动化;1997年12期
13 刘耀年,张文生,张玉霞;一种电力系统短期负荷预测的新方法[J];电力系统及其自动化学报;2001年04期
14 赵剑剑,张步涵,程时杰,陆俭;一种基于径向基函数的短期负荷预测方法[J];电网技术;2003年06期
15 姜飞,龙子泉,林峰中南电力设计院;模糊神经网络在电力短期负荷预测中的应用[J];自动化技术与应用;2003年08期
16 张晓,敬东;基于快速人工神经网络的短期负荷预测[J];继电器;2000年12期
17 刘耀年,张文生,张玉霞,殷立新;基于模糊聚类理论的电力系统短期负荷预测的方法[J];东北电力学院学报;2000年03期
18 贺蓉,曾刚,姚建刚,青志文,沈新祥,刘明清;天气敏感型神经网络在地区电网短期负荷预测中的应用[J];电力系统自动化;2001年17期
19 梁海峰,涂光瑜,唐红卫;遗传神经网络在电力系统短期负荷预测中的应用[J];电网技术;2001年01期
20 林开英,俞集辉;神经网络短期负荷预测中的数据分析[J];重庆大学学报(自然科学版);2002年09期
中国重要会议论文全文数据库 前10条
1 胡松峰;彭显刚;;电网短期负荷预测方法综述[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
2 盛琼;顾泽;骆丽楠;;基于实时气象要素的湖州短期负荷预测研究[A];第八届长三角气象科技发展论坛论文集[C];2011年
3 邢晓哲;刘玉良;丁旭元;;考虑端点效应的经验模态分解在短期负荷预测中的应用[A];低碳经济与科学发展——吉林省第六届科学技术学术年会论文集[C];2010年
4 刘念;徐成华;;利用RBF对农村低压台区进行短期负荷预测[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
5 杜欣慧;张岭;毕艳华;;采用自适应神经网络进行短期负荷预测[A];2004全国测控、计量与仪器仪表学术年会论文集(下册)[C];2004年
6 田晓;颜勇;孔凡坊;顾德英;;新型神经网络在短期负荷预测中的应用研究[A];山东电机工程学会第五届供电专业学术交流会论文集[C];2008年
7 李婷;徐搏;刘青山;刘俊男;辛鹏;;基于EMD与SVM及GA相结合的短期负荷预测[A];低碳经济与科学发展——吉林省第六届科学技术学术年会论文集[C];2010年
8 郭恒;罗可;唐贤瑛;;基于自适应神经模糊推理系统(ANFIS)的电力系统短期负荷预测[A];第十届全国电工数学学术年会论文集[C];2005年
9 高荣;刘晓华;;短期负荷预测的模糊聚类多支持向量机模型研究[A];2009中国控制与决策会议论文集(2)[C];2009年
10 高秉健;吕金虎;;基于混沌时间序列的电力系统短期负荷预测[A];2001中国控制与决策学术年会论文集[C];2001年
中国重要报纸全文数据库 前9条
1 通讯员 池长斌;宁夏电力短期负荷预测保持领先[N];中国电力报;2011年
2 张树斌 范明;湖北电网中、短期负荷预测系统显神威[N];华中电力报;2001年
3 王海亚;负荷预测的几种方法及特点[N];黔西南日报;2008年
4 通讯员池长斌;宁夏电网短期负荷预测西北第一[N];中国电力报;2011年
5 本报记者 林海宇;对迎峰度夏和奥运保电工作再部署再动员[N];华东电力报;2008年
6 宋鹏涛;华北电网多措并举保国庆用电[N];华北电力报;2005年
7 曹琰陈也清;华中电网用电负荷创新高[N];国家电网报;2008年
8 记者 龙建平;“黄金周”广东电网两不误[N];中国电力报;2006年
9 崔春华;西北电网公司积极调度缓解我省供电紧张[N];陕西日报;2008年
中国博士学位论文全文数据库 前10条
1 王硕禾;基于短期负荷预测技术的电能控制系统研究[D];天津大学;2009年
2 张智晟;基于多元理论融合的电力系统短期负荷预测的研究[D];天津大学;2004年
3 程其云;基于数据挖掘的电力短期负荷预测模型及方法的研究[D];重庆大学;2004年
4 杨奎河;短期电力负荷的智能化预测方法研究[D];西安电子科技大学;2004年
5 雷绍兰;基于电力负荷时间序列混沌特性的短期负荷预测方法研究[D];重庆大学;2005年
6 卢芸;短期电力负荷预测关键问题与方法的研究[D];沈阳工业大学;2007年
7 杨尚东;发电商市场预测与竞价决策优化新方法研究[D];华北电力大学(北京);2007年
8 孙春顺;风力发电系统运行与控制方法研究[D];湖南大学;2008年
9 郑永康;相空间重构与支持向量机结合的短期负荷预测研究[D];西南交通大学;2008年
10 张维戈;纯电动公交车换电站优化设计和经济运行研究[D];北京交通大学;2013年
中国硕士学位论文全文数据库 前10条
1 朱焕荣;遗传规划在电力短期负荷预测中的应用[D];河北农业大学;2011年
2 刘凯;基于改进BP神经网络的短期负荷预测研究[D];河海大学;2005年
3 冷北雪;基于支持向量机的电力系统短期负荷预测[D];西南交通大学;2010年
4 刘继胜;基于人工神经网络的电力系统短期负荷预测的应用分析[D];华北电力大学(北京);2011年
5 赵福成;基于人工神经网络的短期负荷预测[D];华北电力(北京)大学;2002年
6 李海东;人工智能方法在电力系统短期负荷预测中的研究[D];辽宁工程技术大学;2002年
7 陈晨;基于WNN神经网络的短期负荷预测[D];西安理工大学;2010年
8 白波;基于加权LS-SVM的短期负荷预测研究[D];东北电力大学;2011年
9 胡启元;针对电力系统短期负荷预测的研究[D];四川大学;2004年
10 朱要明;林芝地区电力负荷的短期预测[D];西藏大学;2010年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978