收藏本站
《河北大学》 2007年
收藏 | 手机打开
二维码
手机客户端打开本文

基于支持向量机的多光谱数据分类

鲁淑霞  
【摘要】: 结合国家自然科学基金和河北省自然科学基金项目,研究了基于支持向量机的多光谱数据分类问题。目前遥感信息的提取和利用水平大大滞后于遥感技术的发展,因此研究新的理论和方法提高遥感信息的提取水平具有十分重要的意义。在多光谱数据分类中,由于训练样本非常有限、数据维数很高,容易导致严重的Hughes现象,传统模式识别的分类方法难以取得很好的结果。统计学习理论第一次系统地研究了在有限样本下的机器学习问题,提出了一种能够根据样本数量的多少合理地控制分类器的推广能力的一种模型选取原则—结构风险最小化原则。支持向量机是在该理论框架下产生的一种学习方法。本文以统计学习理论(Statistic Learning Theory-SLT)和支持向量机(Support Vector Machine-SVM)为基础,开展了以下几个方面的研究工作: 首先,深入分析了多光谱数据的特点和传统模式分类方法在多光谱数据分类中面临的困难。把统计学习理论和支持向量机用于多光谱数据分类,有效地克服了Hughes现象,获得了比一般方法更好的分类精度。 其次,总结了现有的几种有代表性的多类支持向量机方法,这些方法包括:一对多(one-against-all)、一对一(one-against-one)、有向无环图支持向量机(DAG-SVMs)、决策树分类和全局优化分类(MSVM);还介绍了两种模糊支持向量机方法。提出了两种改进的模糊多类支持向量机方法,它是在全局优化分类(MSVM)的基础上,引入模糊隶属函数,并将其用于多光谱数据分类,提高了数据的分类精度,具有较强的泛化能力。 第三,针对传统支持向量机方法中存在对噪声或野点敏感的问题,提出了两种基于支持向量数据描述的模糊多类支持向量机方法。重点在隶属度的选取上不同,在确定样本的隶属度时,不仅考虑了样本与类中心之间的关系,还考虑了类中各个样本之间的关系。一种是基于数据紧描述引入模糊隶属函数;另一种是基于支持向量数据描述引入模糊隶属函数,使用近邻方法提取每个数据点的局部密度。数值实验结果表明,与几种支持向量机方法相比,上述两种基于支持向量数据描述的模糊多类支持向量机方法具有良好的抗噪性能及分类能力。 第四,为了减少计算的复杂度,提出了基于聚类的支持向量机反问题求解方法。从实验结果看,基于聚类求解SVM反问题,有效地减少了算法复杂度,提高了计算效率,还研究了最大间隔与两个聚类中两个最近点的距离之间的数量关系。针对线性可分情况,研究表明线性硬间隔分类机的对偶问题与凸壳问题(平分最近点法)是等价的,线性硬间隔分类机的最大间隔与凸壳问题的两个最近点的距离相等:针对非线性可分情况,研究表明线性软间隔分类机的对偶问题与缩小的凸壳问题(推广的平分最近点法)是等价的,线性软间隔分类机的最大间隔与缩小的凸壳问题的两个最近点的距离相等。 最后,总结了适合于求解大型问题的训练算法:选块算法(Chuncking),分解算法(Decomposing)和序列最小最优化算法(Sequential Minimal Optimization-SMO)等,这些都是专门针对支持向量机设计的快速算法;然后利用改进的序列最小最优化算法求解模糊多类支持向量机,实验结果显示运行时间减少了,方法是可行的和有效的。
【学位授予单位】:河北大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:TP79

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 欧敏;林从谋;;支持向量机预测高边坡爆破质点振动速度[J];金属矿山;2011年06期
2 关欣;郭强;张政超;赵静;翟鸿君;;基于核函数支持向量机的雷达辐射源识别[J];弹箭与制导学报;2011年04期
3 谢凌然;高长伟;沈玉娣;;基于混合核函数支持向量机的齿轮诊断方法研究[J];机械传动;2011年09期
4 王慧勤;雷刚;;基于LIBSVM的风速预测方法研究[J];科学技术与工程;2011年22期
5 余珺;郑先斌;张小海;;基于多核优选的装备费用支持向量机预测法[J];四川兵工学报;2011年06期
6 戴蓉;黄成;;飞机飞行事故率预测建模与仿真研究[J];计算机仿真;2011年07期
7 王安娜;李云路;赵锋云;史成龙;;一种新的半监督直推式支持向量机分类算法[J];仪器仪表学报;2011年07期
8 王永成;王宏飞;姜长生;;基于粗糙集支持向量机的空袭目标识别[J];火力与指挥控制;2011年09期
9 蒋强荣;高远;张鸿宾;;基于直方图交核的人脸识别[J];北京工业大学学报;2011年08期
10 翟鸿雁;曾晋明;曾纪霞;;基于支持向量机的电力市场价格预测中的核函数比较[J];计算技术与自动化;2011年02期
中国重要会议论文全文数据库 前10条
1 林杰华;张斌;李冬森;宋华茂;余志强;王浩;;支持向量机在电力客户信用评级中的应用[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
2 蒋铁军;张怀强;李积源;;多变量系统预测的支持向量机方法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年
3 黄淑云;孙兴玉;梁汝萍;邱建丁;;基于小波支持向量机预测蛋白质亚细胞定位研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
4 谢湘;匡镜明;;支持向量机在语音识别中的应用研究[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
5 涂冬成;薛龙;刘木华;赵进辉;沈杰;吁芳;;基于支持向量机的鹅肉肉色客观评定研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
6 杨凌;刘玉树;;基于支持向量机的坦克识别算法[A];第三届全国数字成像技术及相关材料发展与应用学术研讨会论文摘要集[C];2004年
7 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年
8 张军;;支持向量机方法在地下水位干扰排除中的初步应用[A];2007年地震流体学术研讨会论文摘要集[C];2007年
9 许建生;盛立东;;基于改进的支持向量机和BP神经网络的识别算法[A];第八届全国汉字识别学术会议论文集[C];2002年
10 荣海娜;张葛祥;张翠芳;;基于支持向量机的非线性系统辨识方法[A];中国自动化学会、中国仪器仪表学会2004年西南三省一市自动化与仪器仪表学术年会论文集[C];2004年
中国重要报纸全文数据库 前10条
1 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年
2 李水根;计算机详解配伍与药效关系[N];健康报;2005年
3 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年
4 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年
5 上海大学理学院教授、副院长 陆文聪;酷爱化学 孜孜以求[N];中国化工报;2006年
6 ;选择合适的数据挖掘算法[N];计算机世界;2007年
7 周颖;王米渠与中医心理学[N];中国中医药报;2006年
8 记者 耿挺;蛋白质功能算出来[N];上海科技报;2007年
9 记者 张云普通讯员 全攀峰 安强强;大庆物探深度域地震资料岩性解释技术获得五大突破[N];中国石油报;2008年
10 本报记者 冯治恩;敢与“雷公”试比高[N];铜川日报;2008年
中国博士学位论文全文数据库 前10条
1 鲁淑霞;基于支持向量机的多光谱数据分类[D];河北大学;2007年
2 杜小芳;基于CPFR的农产品采购模型研究[D];华中科技大学;2005年
3 刘育明;动态过程数据的多变量统计监控方法研究[D];浙江大学;2006年
4 栾锋;支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D];兰州大学;2006年
5 孙薇;市场条件下抽水蓄能电站效益综合评价及运营模式研究[D];华北电力大学(河北);2007年
6 常群;支持向量机的核方法及其模型选择[D];哈尔滨工业大学;2007年
7 朱燕飞;锌钡白回转窑煅烧过程智能建模研究[D];华南理工大学;2005年
8 田英杰;支持向量回归机及其应用研究[D];中国农业大学;2005年
9 燕忠;基于蚁群优化算法的若干问题的研究[D];东南大学;2005年
10 任东;基于支持向量机的植物病害识别研究[D];吉林大学;2007年
中国硕士学位论文全文数据库 前10条
1 江锋;支持向量机在分类及人脸检测应用中的研究[D];南京理工大学;2003年
2 傅正钢;基于统计学习的人工智能在数字游戏和数字娱乐上的应用[D];浙江大学;2004年
3 朱晓芳;基于支持向量机的田间杂草识别方法研究[D];江苏大学;2010年
4 朱明玲;基于改进的小波变换和支持向量机的纺织细纱机故障自动诊断[D];东华大学;2011年
5 张宝华;支持向量机在入侵检测系统中的研究和应用[D];天津理工大学;2010年
6 赖永标;支持向量机在地下工程中的应用研究[D];山东科技大学;2004年
7 沈徐辉;基于核主成分与支持向量机的体内药物代谢预测[D];浙江大学;2011年
8 李铮;基于支持向量机的道路交通标志识别的研究[D];燕山大学;2011年
9 王启超;基于组合核函数支持向量机的软测量技术及其应用研究[D];江西理工大学;2011年
10 冯洪海;基于粗糙集和支持向量机的多值分类算法[D];河北农业大学;2002年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026