带有特殊边界条件波动方程的有限差分格式
【摘要】:波动方程的稳定化控制是分布参数控制理论的重要研究内容,其控制方程往往是带有反馈边界条件的波动方程初边值(IBV)问题.带有Neumann型阻尼边界的波动方程IBV问题就是其中一类,对其数值算法的研究具有重要的理论意义与应用价值.首先,本文对如下一类左端为齐次Robin边界,右端为Neumann阻尼边界的波动方程IBV问题wtt(x,t)- wxx(x,t) =f (x,t), ∈ (0,1) × (0,T],wx(0,t) -w(0,t) = 0, wx(1,t) = -wt(1,t), t ∈ [0,T], (1)w(x,0)=φ(x)=,wt(x, 0)=Ψ(x),= x ∈ [0,1].构造了一个三层隐式有限差分格式,运用离散能量方法,证明了差分格式的解的存在唯一性,以及在无穷范数意义下关于时间和空间均是二阶收敛的,并且关于初始条件和右端源项都是无条件稳定的.数值实验验证了理论结果.其次,通过引进新的变量将波动方程IBV问题(1)变成与之等价的如下双曲方程耦合问题wt(x,t)+wx(x,t) = v(x,t), (x,t) ∈ (0,1) × (0,T],vt(x,t) -vx(x,t) = (x,t) ∈ (0,1) × (0,T],(2)w(x,0) = φ(x), v(x, 0) = Ψ(x) + (x), x ∈ [0,1],w(0,t) =v(0,t)-wt(0,t), v(1,t) = 0, t ∈[0,T].然后通过对耦合问题(2)构造有限差分格式,得到波动方程IBV问题(1)的一个新的有限差分格式.运用离散能量方法证明提出的差分格式在L2范数意义下二阶收敛,且关于初始条件和右端项是无条件稳定的.运用Richardson外推法后得到的差分格式的收敛阶更高.数值实验验证了差分格式的精确性和有效性.最后,构造了上述波动方程IBV问题(1)的紧致有限差分格式,并通过数值试验验证了差分格式在无穷范数意义下关于时间方向是二阶收敛的,而关于空间方向是四阶收敛的.
|
|
|
|
1 |
申义庆;杨国伟;高智;;高分辨率有限紧致格式[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年 |
2 |
杨顶辉;滕吉文;张中杰;;二维各向异性介质数值模拟中的TVD方法[A];1995年中国地球物理学会第十一届学术年会论文集[C];1995年 |
3 |
高智;李明军;朱力立;;对流扩散方程的变步长摄动有限差分格式[A];计算流体力学研究进展——第十一届全国计算流体力学会议论文集[C];2002年 |
4 |
何玉芳;傅景礼;;新格子中波动方程的对称性[A];中国力学学会学术大会'2009论文摘要集[C];2009年 |
5 |
陈小宏;牟永光;;地震波动方程反演的多重网格方法[A];1995年中国地球物理学会第十一届学术年会论文集[C];1995年 |
6 |
周辉;徐世浙;刘斌;;波动方程数值模拟[A];1996年中国地球物理学会第十二届学术年会论文集[C];1996年 |
7 |
王续宇;张洪川;盛克敏;;波动方程的直观求解法[A];数学·力学·物理学·高新技术研究进展——2006(11)卷——中国数学力学物理学高新技术交叉研究会第11届学术研讨会论文集[C];2006年 |
8 |
刘洪;刘国峰;武威;袁江华;李幼铭;;多维波动方程逆散射的基础理论研究[A];中国科学院地质与地球物理研究所2007学术论文汇编(第六卷)[C];2008年 |
9 |
张海江;刘雯林;;小波多尺度波动方程分析[A];1999年中国地球物理学会年刊——中国地球物理学会第十五届年会论文集[C];1999年 |
10 |
马啸;杨顶辉;;波动方程的加权近似解析离散化方法[A];中国地球物理学会第二十四届年会论文集[C];2008年 |
|