收藏本站
《太原理工大学》 2007年
收藏 | 手机打开
二维码
手机客户端打开本文

A~2/O~2生物膜法处理焦化废水中试研究

赵义  
【摘要】: 焦化废水成分复杂,除含高浓度NH_3-N外,还含大量难降解有机物。主要为芳香族有机物、杂环及多环芳烃有机物,可生化性较差。焦化废水的污染控制一直是我国工业废水污染控制的重大难题。大多数焦化厂面临的主要问题是经生物处理后COD和NH_3-N浓度仍然不能达到污水综合排放标准(GB9878-1996)一级标准(即COD≤100mg/L,NH_3-N≤15mg/L),或者要对生物处理系统进水用大量清水稀释后处理出水才能达到污水综合排放标准的一级标准。 活性污泥法生物处理目前仍是大多数焦化厂主要的废水处理方法。国内两种比较流行的A/O(缺氧/好氧)和A~2/O(厌氧/缺氧/好氧)活性污泥法焦化废水生物处理工艺存在的主要问题是生化处理出水COD和NH_3-N浓度很难同时达标。不能同时达标的主要原因是:(1)由于好氧反应器进水COD浓度较高,活性污泥中硝化菌比例太低,而且废水中含有多种生物抑制性有机物,也抑制了硝化菌的活性,好氧反应器硝化效果差,使NH_3-N很难达标;(2)由于焦化废水NH_3-N浓度较高,进水中可生物降解COD浓度较低,缺氧反应器水力停留时间短,不能充分发挥缺氧反应器中反硝化菌对好氧和厌氧条件下生物难降解有机物的缺氧降解作用,在缺氧反应器中反硝化碳源有机物严重不足。由于未能充分利用反硝化过程对COD的去除能力,反硝化效果差,使A/O和A~2/O活性污泥法不能充分发挥全流程对COD的去除能力。 论文以山西省临汾市同世达实业有限公司焦化厂废水处理系统气浮设备出水为实验废水水源,在中试规模上研究了生物膜法A~2/O~2工艺(厌氧/缺氧/好氧/好氧)处理焦化废水的工艺特性和效果。厌氧和缺氧反应器为以陶粒为填料的上流式滤池,第一级好氧反应器为以塑料空心球为填料的生物接触氧化池,第二级好氧反应器为以陶粒为填料的上流式曝气生物滤池。实验中生物膜法A~2/O~2工艺系统进水COD浓度多数在1000~2200mg/L范围内,进水NH_3-N浓度大部分在200~400mg/L范围内。 对中试系统和各反应器的主要研究结论如下: 1.水解酸化(厌氧)反应器 水解酸化菌在填料表面附着能力差,很难直接在填料上形成成熟的生物膜,因而生物膜法水解酸化工艺启动时间较长。在启动期间焦化废水COD和NH_3-N浓度的剧烈变化,会影响水解酸化反应器的启动运行。以陶粒为填料的水解酸化反应器从挂膜启动到生物膜成熟约需半年时间。焦化废水水解酸化处理的目的是提高其可生化性,焦化废水中的含氮有机物的比例较大,含氮有机物水解酸化过程会释放出NH_3-N。因此从工程上,可以很方便的用水解酸化反应器进出水BOD/COD比值的变化和进出水NH_3-N浓度的变化来判断水解酸化反应器挂膜启动成熟程度和运行效果。水解酸化反应器对焦化废水COD和BOD都有一定的去除作用。对于中试的水质条件水解酸化时间以20h为最好。当HRT为20h,进水COD容积负荷为1.61~2.65kgCOD/(m~3·d)时,在进水BOD/COD比值为0.05~0.17的情况下,出水BOD/COD比值为0.16~0.48,平均提高了175%左右,出水BOD/COD比值最高可提高至0.48,提高了336.4%左右,大大改善了水解酸化反应器出水的可生化性。焦化废水水质浓度变化大,可以用水力停留时间作为水解酸化反应器的设计参数。以陶粒为填料的水解酸化反应器生物量(以SS计)高达8960mg/L,挥发性固体含量(VSS)高达7420mg/L。由于生物量高,以陶粒为填料的水解酸化反应器对进水pH值、温度和进水水质变化有很强的适应性。处理焦化废水水解酸化反应器的优势微生物主要为兼性菌,有芽孢杆菌属、气单胞菌属、黄杆菌属及副球菌属等。以陶粒为填料的水解酸化反应器泥龄长,剩余污泥产率很低,在两年的运行中水解酸化反应器未进行反冲洗,不影响水解酸化反应器的运行效果。 2.缺氧反应器 挂膜启动期间由于生物膜尚不完全成熟,反硝化能力差,应采用较小的回流比。缺氧反应器的回流以300%为宜。当回流比为300%时,NO_3-N的平均还原率略高于90%。为使反硝化反应正常进行,缺氧反应器的水温必须保持在20℃以上。焦化废水经水解酸化处理后,进入缺氧反应器的废水pH值一般在6~8之间,可以满足缺氧反应器对于pH值的要求。缺氧反硝化对去除焦化废水中COD有重要作用。反硝化菌可以利用一些好氧微生物和厌氧微生物都难以降解的焦化废水中的有机物作碳源进行反硝化。因此,缺氧反应器中硝态氮的反硝化有促进焦化废水中难降解有机物降解的作用,从而可以提高系统的COD去除效果,反硝化反应器可以去除进水中的40%的COD。所以,在A~2/O~2焦化废水处理工艺中,缺氧反应器的合理设计对保证系统出水COD浓度达标至关重要。只要充分发挥反硝化菌对焦化废水中难降解有机物的缺氧降解作用,对焦化废水缺氧反硝化而言,碳源还是相对充足的,不需要补充外加碳源。缺氧反硝化进水C/N比在5以上就可以基本上满足反硝化对于碳源的需求。由于生物膜法A~2/O~2焦化废水处理工艺中,反硝化菌可利用的碳源除水解酸化反应器出水中容易生物降解的有机物外,还需要利用厌氧和好氧作用难于生物降解的有机物和内源碳作碳源。因此,反硝化速率相对于城市污水反硝化要低得多。反硝化反应器的NO_3-N容积负荷也相对较低。中试中稳定运行状况下的NO_3-N容积负荷不大于0.24kgNO_3-N/(m~3·d)。缺氧反应器的水力停留时间不小于24h。以陶粒为填料上向流生物膜缺氧反应器中生物量(以SS计)从下到上逐渐减小,平均生物量(以SS计)为4.16g/L,挥发性固体含量(VSS)为3.24g/L。当填料粒径为3~6mm时,生物膜反硝化反应器由于回流比较大,填料中的上向流速也较大,可以使反硝化产生的氮气自然逸出,不需要考虑释氮循环,也不需要对填料进行定期反冲洗。处理焦化废水缺氧反应器的优势微生物主要为产碱杆菌属、施氏假单胞菌属、黄杆菌属等。尽管二级好氧生物反应器中的溶解氧浓度较高(4~5mg/L),由于缺氧反应器中水流推流式上升,反应器底部的微生物可以尽快的消耗回流硝化液带到反应器中的溶解氧,大大减少了回流硝化液中溶解氧对反硝化的抑制作用。 3.好氧反应器 二级好氧生物反应器曝气生物滤池的启动挂膜应在气温较高的夏天进行,可以缩短挂膜启动的时间;挂膜期间尽量限制NH_3-N负荷,二级好氧反应器的进水NH_3-N浓度最好不高于60mg/L,防止对还不成熟的硝化菌生物膜产生抑制作用,影响挂膜启动;挂膜期间,可适当增加稀释水,以降低焦化废水中有机物的毒性;挂膜初期最好采用较小的气水比,防止对尚未成熟的生物膜冲刷作用过强。一级好氧反应器对COD有较好的去除效果。当容积负荷不大于2.79kgCOD/(m~3·d)日寸,COD去除率不低于80%。二级好氧反应器进水中COD浓度小于200mg/L时,对NH_3-N的去除影响不大;当水中COD浓度超过200mg/L时,NH_3-N的去除率有所下降。当二级好氧反应器进水COD负荷≤0.67kg/(m~3·d)NH_3-N负荷≤0.49kg/(m~3·d)时,可以得到良好的硝化效果。当水解酸化时间为20h,缺氧反应器HRT为24h,对系统进水不进行稀释,一级好氧反应器和二级好氧反应器HRT为48h,一级好氧反应器DO为5~6mg/L,COD容积负荷为0.40kg/(m~3·d),NH_3-N容积负荷为0.128kg/(m~3·d);二级好氧反应器DO为4~5mg/L,COD容积负荷为0.07kg/(m~3·d),NH_3-N容积负荷为0.022kg/(m~3·d)时,系统出水COD和NH_3-N浓度都可以达到国家《污水综合排放标准》(GB8978-1996)中的一级标准。由于焦化废水COD和NH_3-N浓度高,并且含有大量生物难降解有机物和对生物有毒有害物质,有机物好氧生物降解速率和氨氮硝化速率相对于城市污水来说要低得多。因此,焦化废水生物处理时以去除COD为主要功能的一级好氧反应器和以NH_3-N硝化为主要功能的二级好氧反应器应该采用较低的容积负荷和较长的水力停留时间,以保证在系统进水不进行稀释的条件下,系统出水COD和NH_3-N浓度同时达到国家《污水综合排放标准》(GB8978-1996)中的一级标准。一级好氧反应器生物量(以SS计)为7.44g/L,二级好氧反应器生物量(以SS计)为3.87g/L。活性污泥法单独硝化工艺中MLSS很难超过2g/L,实验中,曝气生物滤池中生物量(以SS计)为3.87g/L,比活性污泥法单独硝化工艺中的MLSS值高得多。由于生物膜法构筑物用于硝化处理时,可以保持较高的生物量,因此,当采用单独硝化工艺时,宜采用生物膜法构筑物。一级好氧反应器主要优势菌为异养菌,主要菌属为芽抱杆菌属、动胶菌属、黄杆菌属、诺卡菌属及产碱杆菌属;二级好氧反应器优势菌为硝化菌,主要菌属为硝化杆菌、硝化球菌、亚硝化单细胞及亚硝化球菌。异养菌为一级好氧反应器的优势菌,亚硝化菌和硝化菌为二级好氧反应器的优势菌。有机物浓度、溶解氧浓度、温度、pH值、碱度等都对二级好氧反应器硝化作用有影响。最佳条件是:溶解氧浓度在5mg/L左右,温度保持在25℃左右,pH值控制在7.0~7.8之间,维持出水碱度在150mg/L以上。二级好氧反应器曝气生物滤池不仅用于去除COD和NH_3-N,反应器内的填料还有截留悬浮物的过滤作用,系统经过5个月的运行后才在曝气生物滤池出水检出很低的SS浓度。有利于降低出水中微生物固体的COD量,对降低出水COD浓度有一定作用。焦化废水由于COD和NH_3-N浓度都很高,应采用两级好氧工艺。第一级好氧构筑物以去除COD为目标,第二级好氧构筑物以NH_3-N硝化为目标。由于去除COD和NH_3-N硝化在不同的构筑物中完成,应针对两个不同阶段进行各自优化管理。采用单独的硝化工艺,由于进水中碳源有机物浓度低,易于形成硝化菌为优势菌的生物相。特别是在第一级好氧反应器中,由于生物降解作用大大减少了对二级好氧反应器中硝化菌有害和有毒物质浓度,减轻了对第二级好氧构筑物中硝化菌的抑制和毒性作用,大大提高了硝化构筑物的硝化效率和运行的稳定性。 研究结果表明,系统进水COD浓度在1000~2200mg/L范围内,进水NH_3-N浓度在200~400mg/L范围内,对系统进水不进行稀释的条件下,水解酸化反应器HRT为20h,缺氧反应器HRT为24h,一级好氧反应器和二级好氧反应器HRT均为48h,二级好氧反应器硝化液回流比为3时,生物膜法厌氧/缺氧/好氧/好氧(A~2/O~2)处理出水COD≤100mg/L,NH_3-N≤15mg/L,COD和NH_3-N浓度可以同时达到《污水综合排放标准》(GB8978-1996)中的一级排放标准。 本研究在焦化废水的生物处理技术上取得如下的创新性成果: (1)提出生物膜法厌氧/缺氧/好氧/好氧(A~2/O~2)处理焦化废水工艺。厌氧和缺氧反应器为以陶粒为填料的上流式滤池,第一级好氧反应器为以塑料空心球为填料的生物接触氧化池,第二级好氧反应器为以陶粒为填料的上流式曝气生物滤池。 (2)中试规模研究了生物膜法A~2/O~2工艺处理焦化废水的工艺参数,为生产工艺的设计提供了技术参数。 (3)焦化废水经隔油和气浮预处理后,在不对焦化废水进行稀释的条件下,采用生物膜法A~2/O~2工艺,处理出水COD和NH_3-N浓度可以同时达到国家《污水综合排放标准》(GB8978-1996)中的一级标准(即COD≤100mg/L,NH_3-N≤15mg/L)。 (4)强调了缺氧反硝化在处理流程中对COD去除的重要作用。缺氧反应器的合理设计对保证系统出水COD浓度达标至关重要。只要充分发挥反硝化菌对焦化废水中难降解有机物的缺氧降解作用,对焦化废水缺氧反硝化而言,碳源还是相对充足的,不需要补充外加碳源。研究结果表明,缺氧反硝化进水C/N比在5以上就可以基本上满足反硝化对于碳源的需求。
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2007
【分类号】:X784

【相似文献】
中国期刊全文数据库 前10条
1 邬文鹏;李素芹;;生物膜法处理焦化废水最佳工艺参数研究[J];给水排水;2009年S2期
2 李睿;程芳琴;许林虎;张子兴;;生物接触氧化法的填料对焦化废水处理效果的实验研究[J];煤化工;2006年05期
3 邬文鹏;李素芹;熊国宏;苍大强;;生物膜法处理焦化废水试验研究[J];中国高新技术企业;2010年01期
4 袁永梅;;A2/O工艺处理焦化废水[J];科技咨询导报;2007年22期
5 李亚新;赵义;岳秀萍;杨怀旺;杜金成;姚润生;马健安;;生物膜法A~2/O~2焦化废水处理系统中好氧反应器工艺特性[J];工业水处理;2008年01期
6 李亚新;赵义;岳秀萍;周鑫;杨怀旺;杜金成;姚润生;马健安;;生物膜法A~2/O~2焦化废水处理系统缺氧反应器工艺特性[J];工业用水与废水;2008年01期
7 周玲玲;A~2/O生物脱氮法处理焦化废水的探讨[J];能源环境保护;1998年06期
8 陶文斌;;焦化废水处理技术的现状及发展[J];科技情报开发与经济;2009年36期
9 张晓健,雷晓玲,何苗,谷中春;好氧生物处理对焦化废水中有机物的去除[J];环境保护;1994年08期
10 张永发,孙亚玲,秦玉明,温莉;生物脱氮研究及其在处理焦化废水中的应用[J];煤炭转化;1994年01期
中国重要会议论文全文数据库 前10条
1 董轶茹;刘文丽;;焦化废水对蚕豆和大麦毒性的研究[A];2010中国环境科学学会学术年会论文集(第三卷)[C];2010年
2 于剑峰;李玉平;曹宏斌;阎子峰;;陶瓷过滤预处理焦化废水研究[A];2010中国环境科学学会学术年会论文集(第三卷)[C];2010年
3 韦朝海;;煤化工中焦化废水的污染、控制原理与技术应用[A];中国化学会第28届学术年会第2分会场摘要集[C];2012年
4 徐建平;蔡昌凤;黄建宇;徐四海;;独立焦化企业在区域循环经济模式下的焦化废水零排放新工艺研究与实践[A];2011中国环境科学学会学术年会论文集(第一卷)[C];2011年
5 王小文;胡芸;韦朝海;吴超飞;;疏水化改性分子筛对焦化废水的吸附研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
6 张耘;陶明清;成小峰;;水生植物复合生物膜法净化入江溢流污染的试验研究[A];2011中国环境科学学会学术年会论文集(第一卷)[C];2011年
7 张仁鹏;戎吉;刘海棠;房井新;;焦化废水零排放探讨[A];2011年全国冶金节能减排与低碳技术发展研讨会文集[C];2011年
8 李国良;;焦化废水达标思考与试验[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(下册)[C];2001年
9 杨天旺;吴洪英;林齐枢;;应用HSB技术处理焦化废水的中试研究[A];中国金属学会2003中国钢铁年会论文集(2)[C];2003年
10 许一华;;焦化废水COD为何难降解[A];苏、鲁、皖、赣、冀五省金属学会第十五届焦化学术年会论文集(下册)[C];2010年
中国重要报纸全文数据库 前10条
1 张新喜 何媛 范美玲;焦化废水快速检测与原水均质技术研究[N];世界金属导报;2009年
2 聂保林;生物脱氮技术治焦化废水顽疾[N];中国环境报;2005年
3 西曲矿 王月爱;焦化废水污染的防治[N];山西科技报;2004年
4 聂保林;桑德SDN焦化废水治理工艺进入推广阶段[N];中国环境报;2005年
5 王娟;CMBR技术实现焦化废水零排放[N];中国化工报;2008年
6 胡新亮 陈昌华 李会龙;国内采用物理吸附法处理焦化废水的研究[N];世界金属导报;2008年
7 付久来 闫利民 李晓辉;工业废水“废而不弃”[N];中国矿业报;2009年
8 刘云平;SDN工艺治理焦化废水效果好[N];中国冶金报;2006年
9 记者 宋家辰 刘敬元 通讯员 曹洪儒;焦化废水深度处理有了新希望[N];中国冶金报;2009年
10 记者 单广明;省人大视察组来通[N];通化日报;2008年
中国博士学位论文全文数据库 前10条
1 董轶茹;焦化废水对植物的毒性作用研究[D];山西大学;2010年
2 赵义;A~2/O~2生物膜法处理焦化废水中试研究[D];太原理工大学;2007年
3 严兴;A~2/O固定生物膜法焦化废水处理系统群落空间演替模式的系统轨迹分析及应用[D];上海交通大学;2007年
4 徐金球;超声空化及其组合技术降解焦化废水的研究[D];昆明理工大学;2002年
5 傅敏;活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D];重庆大学;2004年
6 胡龙兴;SBBR技术特性和动力学机制及其在废水处理中的应用[D];上海大学;2004年
7 唐光临;焦化废水亚硝化反硝化生物脱氮的研究[D];重庆大学;2002年
8 杨平;聚合物载体流化床反应器生物颗粒特性及焦化废水流化床系统生物脱氮研究[D];四川大学;2002年
9 李娜;介孔生物填料流化床和蒙脱石吸附混凝工艺脱氮除酚效能[D];哈尔滨工业大学;2008年
10 裴廷权;复合微生物制剂处理垃圾渗滤液的应用及其机理研究[D];重庆大学;2009年
中国硕士学位论文全文数据库 前10条
1 陈辅强;生物膜A~2/O~2工艺处理焦化废水厌氧反应器工艺特性研究[D];太原理工大学;2006年
2 孙国新;焦化废水生物脱氮的试验研究[D];重庆大学;2002年
3 白莉;焦化废水短程硝化-反硝化脱氮技术研究[D];太原理工大学;2003年
4 马英歌;复合高铁酸盐处理焦化废水的研究[D];广西大学;2001年
5 帖靖玺;生物强化技术处理焦化废水中难降解有机物及其相关性分析[D];西安建筑科技大学;2003年
6 徐云;焦化废水优势菌的分离及其降解特性研究[D];西安建筑科技大学;2004年
7 马晓利;超声辐照——活性污泥法处理焦化废水新工艺[D];昆明理工大学;2002年
8 李冰;ASBR+SBR(反硝化)+SBR(碳氧化)+BAF(硝化)联合处理焦化废水的研究[D];太原理工大学;2003年
9 兰吉奎;固定床厌氧—好氧生物膜反应器处理焦化废水的实验研究[D];暨南大学;2011年
10 陈启斌;固定化优势菌处理焦化废水动力学基因研究[D];太原理工大学;2002年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026