收藏本站
《内蒙古农业大学》 2008年
收藏 | 手机打开
二维码
手机客户端打开本文

支持向量机在湖泊富营养化评价及水质预测中的应用研究

武国正  
【摘要】: 湖泊富营养化问题是当今世界面临的最主要水污染问题之一,湖泊富营养化评价与水质预测是认识和研究湖泊水环境的一项重要内容,其目的是准确反映湖泊水环境的质量和污染状况,预测未来的发展趋势,是湖泊水环境管理保护和治理的一项重要基础性工作。目前在进行湖泊水质预测与富营养化评价时,存在的主要问题是没有一个被大家公认通用的具有可比性的水质预测与评价的数学模型,各部门在进行评价时,选用数学模型的任意性很大。这些方法虽然在实际应用中占据主导地位,但人们也发现它们还存在着许多不足之处。 支持向量机是近年来兴起的一种新型算法,是复杂非线性科学和人工智能科学的研究前沿,由于其突出的分类与回归性能,逐渐在许多研究领域展开了广泛的应用与研究。本文试图在总结前人的已有的一些工作基础上深入研究该方法在水环境质量评价特别是湖泊富营养化评价及预测中的应用,同时对支持向量机模型参数的选取对模型精度的影响做出评价。 研究结果表明,支持向量机理论与算法完全可以应用于湖泊水质预测与富营养化评价中,而且模拟结果较已有成熟方法的精度相当甚至更好,其结果合理可行。本文所研究的主要内容有如下几点: (1)对目前水环境质量评价及预测的研究方法进行系统总结。针对目前评价与预测方法存在的一些缺陷引出了支持向量机算法,简要回顾了支持向量机算法的发展历程和研究现状并总结了该算法的优点所在。 (2)概述了机器学习的目的、机器学习的基本模型、机器学习的三种主要的问题、经验风险最小化原则和复杂性与推广能力。详细阐述了统计学习理论的基本思想及主要研究内容。 (3)系统的介绍了支持向量机分类算法和回归机的基本原理,总结了目前支持向量机分类算法和回归机的标准算法以及各种变形算法,并对各种算法的原理进行了详细的说明,分析讨论了这些算法的优缺点,清楚全面的认识支持向量机的研究内容。同时探讨并建立了支持向量回归中的预测信任度并总结了支持向量回归机方法的特点。 (4)以乌梁素海为例,以WEKA软件为实现平台,将支持向量机方法引入到湖泊富营养化评价与水质预测中来,探讨其方法在该领域的适用性。同时与已有的成熟算法进行比较分析,最后总结出支持向量机方法的优点所在。 (5)总结了不同参数变化情况下对模型精度的影响,比较了ε-SVR和v-SVR两种方法的拟合精度,对乌梁素海2001年5、7、10月和2002年5、7、10月的pH进行预测并与线性回归(LR)、BP神经网络和RBF网络做了对比分析,其结果优于其它几种方法。 (6)分析了造成乌梁素海冰封期水体呈富营养化的原因。 本论文的创新之处有以下几个方面: (1)首次将支持向量机方法引入湖泊富营养化评价的研究领域,拓展了支持向量机的应用范围,丰富了富营养化评价方法。 (2)首次将基于时间序列的支持向量回归模型应用于湖泊水质预测,且模型预测精度较其它方法有进一步的提高。 (3)评价了乌梁素海冰封期的水体富营养状况并进行成因分析,这在我国湖泊富营养化的研究中尚属首次。 (4)许多研究支持向量机的学者关心的是如何去寻找模型的最优参数,但却忽略了参数本身的变化对模型精度的影响,本文分析了模型精度随参数的变化而变化的趋势,为以后模型参数的选优提供一些借鉴。
【学位授予单位】:内蒙古农业大学
【学位级别】:博士
【学位授予年份】:2008
【分类号】:X524

【相似文献】
中国期刊全文数据库 前10条
1 朱颖辉;李友荣;刘安中;侯澍旻;;SVM在齿轮小样本故障诊断中的应用[J];煤矿机械;2006年11期
2 朱颖辉;李友荣;刘安中;侯澍;;SVM在齿轮小样本故障诊断中的应用[J];冶金设备;2006年05期
3 邓蕊;马永军;刘尧猛;;基于改进交叉验证算法的支持向量机多类识别[J];天津科技大学学报;2007年02期
4 朱国强,刘士荣,俞金寿;支持向量机及其在函数逼近中的应用[J];华东理工大学学报;2002年05期
5 张宏杰;李雅峰;侯妍妍;;基于支持向量机(SVM)的点焊质量在线监测[J];焊接;2007年10期
6 杨旭,纪玉波,田雪;基于遗传算法的SVM参数选取[J];辽宁石油化工大学学报;2004年01期
7 杨培杰;印兴耀;;基于支持向量机的叠前地震反演方法[J];中国石油大学学报(自然科学版);2008年01期
8 阎辉,张学工,李衍达;应用SVM方法进行沉积微相识别[J];物探化探计算技术;2000年02期
9 王忠;王春丽;刘莉;;基于SVM的多类分类算法改进[J];武汉工程大学学报;2010年07期
10 刘得军;冉群英;王斌;;支持向量机在大庆齐家凹陷测井解释中的应用[J];石油物探;2007年02期
中国重要会议论文全文数据库 前10条
1 宋普云;沈雪勤;吴清;;一种改进的SMO算法[A];第六届全国计算机应用联合学术会议论文集[C];2002年
2 刘斌;魏贤龙;李卓;;基于支持向量机的Widrow自适应滤波器[A];2006中国控制与决策学术年会论文集[C];2006年
3 孙向东;黄日波;;运用SVMs原理预测蛋白质二级结构研究[A];广西微生物学会2003年学术年会论文集[C];2003年
4 张国宣;孔锐;施泽生;郭立;;一种新的基于聚类的SVM迭代算法[A];第二届全国信息获取与处理学术会议论文集[C];2004年
5 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年
6 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
7 荣海娜;张葛祥;张翠芳;;基于支持向量机的非线性系统辨识方法[A];中国自动化学会、中国仪器仪表学会2004年西南三省一市自动化与仪器仪表学术年会论文集[C];2004年
8 李升娟;杨宗尧;于飞;刘喜梅;;基于支持向量机的系统辨识及应用研究[A];全国炼钢连铸过程自动化技术交流会论文集[C];2006年
9 梅立泉;丁雪梅;张淑娟;;结构声振数据的相似性分析和预测[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第6册)[C];2009年
10 张瑞民;袁震东;;基于小波变换和支持向量机的心电图分类[A];2004中国控制与决策学术年会论文集[C];2004年
中国重要报纸全文数据库 前10条
1 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年
2 李水根;计算机详解配伍与药效关系[N];健康报;2005年
3 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年
4 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年
5 上海大学理学院教授、副院长 陆文聪;酷爱化学 孜孜以求[N];中国化工报;2006年
6 ;选择合适的数据挖掘算法[N];计算机世界;2007年
7 周颖;王米渠与中医心理学[N];中国中医药报;2006年
8 记者 耿挺;蛋白质功能算出来[N];上海科技报;2007年
9 记者 张云普通讯员 全攀峰 安强强;大庆物探深度域地震资料岩性解释技术获得五大突破[N];中国石油报;2008年
10 本报记者 冯治恩;敢与“雷公”试比高[N];铜川日报;2008年
中国博士学位论文全文数据库 前10条
1 李忠伟;支持向量机学习算法研究[D];哈尔滨工程大学;2006年
2 武国正;支持向量机在湖泊富营养化评价及水质预测中的应用研究[D];内蒙古农业大学;2008年
3 杨金芳;支持向量回归在预测控制中的应用研究[D];华北电力大学(河北);2007年
4 任东;基于支持向量机的植物病害识别研究[D];吉林大学;2007年
5 张超;基于支持向量机的汽轮机轴系振动故障智能诊断研究[D];华北电力大学(河北);2009年
6 张永;基于模糊支持向量机的多类分类算法研究[D];大连理工大学;2008年
7 梁力文;基于支持向量机的小波滤噪短波近红外光谱在药品定量分析中的研究[D];吉林大学;2009年
8 邢永忠;最小二乘支持向量机的若干问题与应用研究[D];南京理工大学;2009年
9 鲁淑霞;基于支持向量机的多光谱数据分类[D];河北大学;2007年
10 赵莹;半监督支持向量机学习算法研究[D];哈尔滨工程大学;2010年
中国硕士学位论文全文数据库 前10条
1 赖永标;支持向量机在地下工程中的应用研究[D];山东科技大学;2004年
2 刘胜利;基于SVM的网络入侵检测研究[D];大连海事大学;2004年
3 杜晓东;基于支持向量机的数据挖掘方法[D];山东大学;2005年
4 王李东;基于支持向量机(SVM)的短期负荷预测的研究[D];华中科技大学;2005年
5 蒋琳琼;基于支持向量机的货币识别研究[D];中南大学;2007年
6 滕文凯;支持向量机反问题及其解法[D];河北大学;2005年
7 詹超;支持向量机在基因表达数据分类中的研究[D];武汉理工大学;2006年
8 马洁;基于支持向量机的股市预测问题研究[D];天津大学;2006年
9 王忠文;统计学习理论及其在地学中的应用研究[D];吉林大学;2007年
10 罗畅;基于SVM的车牌字符识别研究[D];华中科技大学;2007年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026