基于知识图谱的合作者推荐系统设计与实现
【摘要】:随着互联网和信息技术的不断发展,学术交流与合作不再受地理因素的限制,变得愈加频繁,学者之间的学术合作行为分析逐渐成为科学研究的重要组成。在大数据背景下,如何有效地利用海量学术数据对学者合作网络进行构建,并通过该网络帮助学者挖掘、推荐合适的合作伙伴,成为当前学术网络研究的热点问题。本文提出了基于学术知识图谱的合作者推荐算法,以知识图谱的方式对领域学术网络进行构建,结合基于内容的推荐方法,为学者推荐合作伙伴,并且推荐的结果具有一定的可解释性。首先,对学术数据中学者、研究领域及论文等多源异构信息进行抽取和处理,以图数据库为主要载体,自顶向下的方式构建出计算机领域内的科研知识图谱。其次,通过在知识图谱中定义的元路径组,利用基于网络结构的相似度,为源学者过滤出无直接合作关系但相似度极高的推荐候选集合。然后,利用基于内容过滤推荐中Itembased的思想,根据已经是源学者的合作者的相关特征,计算候选推荐集合中学者与源学者的相似度,依据相似度综合评分生成合作者列表,即为最终推荐结果。最后,在知识图谱中查找推荐的学者与源学者的最短路径,生成对推荐结果的解释。本文提出的基于学术知识图谱的合作者推荐算法已实现为具体的推荐模块,并部署在Web of Scholar系统中。用户可在使用系统时完善个人信息以获得个性化的合作者推荐,推荐结果已经实现可视化展示,供科研人员参考。