收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

支持向量机中参数选取的一个问题

霍罕妮  
【摘要】: 随着计算机和信息技术的快速发展,人们需要花费昂贵的代价收集、存储和处理海量的数据。数据挖掘源于数据库技术引发的海量数据和人们利用这些数据的愿望。用数据管理系统存储数据,用机器学习的方法分析数据、挖掘海量数据背后的知识,便促成了数据挖掘(data mining)的产生。如何从中发现有用的信息,已经成为一个迫切需要解决的问题,数据挖掘技术在这种背景下应运而生。数据挖掘就是在数据库中发现有用的、潜在的、最终可理解的模式的非平凡过程。它是一门交叉学科,涉及机器学习、数学规划、数理统计、模式识别等相关技术。 支持向量机(support vector machine,SVM)是数据挖掘中的一项新技术,是借助于最优化方法解决机器学习问题的新工具。它是机器学习领域若干标准技术的集大成者。它集成了最大间隔超平面、Mercer核、凸二次规划、稀疏解和松弛变量等多项技术。在若干挑战性的应用中,获得了目前为止最好的性能。在美国科学杂志上,支持向量机以及核学习方法被认为是“机器学习领域非常流行的方法和成功的例子,并是一个十分令人瞩目的发展放向”。 首先本文给出了一种新的计算支持向量机中正则参数和核参数的方法,与已有的一些算法不同,它是将C和γ作为优化问题中的变量来处理,并通过遗传算法和确定性算法相结合来解这个平衡约束优化问题,从而求出支持向量机(SVM)在分类问题中的正则参数C和γ。其中遗传算法用来求解以C和γ为变量的优化问题,而确定性算法对每一对C和γ值求解约束。 另外通过数值计算将该方法的的结果与已有的grid search方法进行比较,可以得出用文中所述的方法求得的C和γ值能明显提高支持向量机的泛化性能。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 孟科,张恒喜,李寿安,朱家元;基于SVM的可靠性评估方法研究[J];中国制造业信息化;2004年10期
2 周秀平;王文圣;黄伟军;;支持向量机回归模型在径流预测中的应用[J];水电能源科学;2006年04期
3 胡挺;;基于支持向量机的并购目标搜索研究[J];统计与决策;2007年06期
4 邹华胜;宁书年;杨峰;徐遵义;;支持向量机在储层厚度预测和计算中的应用[J];地球物理学进展;2007年05期
5 范千;王新洲;许承权;;大坝变形预测的支持向量机模型[J];测绘工程;2007年06期
6 郭丽娟;孙世宇;段修生;;支持向量机及核函数研究[J];科学技术与工程;2008年02期
7 王炜;郭小明;王淑艳;刘丽琴;;关于核函数选取的方法[J];辽宁师范大学学报(自然科学版);2008年01期
8 王振友;叶丽婷;牛庆敏;;大气中臭氧含量分析预测的支向量机模型[J];数学的实践与认识;2008年09期
9 王海洋;丁正生;;支持向量机训练算法概述[J];科技信息(科学教研);2008年09期
10 杨钟瑾;;核函数支持向量机的研究进展[J];科技资讯;2008年19期
11 沈乐平;黄维民;饶天贵;;基于支持向量机的上市公司违规预警模型研究[J];中大管理研究;2008年02期
12 王慧勤;;基于支持向量机的短期风速预测研究[J];宝鸡文理学院学报(自然科学版);2009年01期
13 李新战;赵震宇;;支持向量机基础及其应用前景[J];科技信息;2009年17期
14 罗玲玲;周钢;;支持向量机在凝冻日数预测中的应用[J];廊坊师范学院学报(自然科学版);2009年06期
15 王文栋;钟智;元昌安;;基于GEP的支持向量机参数优化[J];广西师范学院学报(自然科学版);2010年02期
16 单连峰;高岩峰;马建忠;;支持向量机在胎膜早破预测中的应用[J];数学的实践与认识;2011年06期
17 孙延风,梁艳春;支持向量机的数据依赖型核函数改进算法[J];吉林大学学报(理学版);2003年03期
18 赵洪波;赵丽红;;支持向量机学习算法—序列最小优化(SMO)[J];绍兴文理学院学报(自然科学版);2003年04期
19 樊可清,倪一清,高赞明;基于频域系统辨识和支持向量机的桥梁状态监测方法[J];工程力学;2004年05期
20 王晶,孙淑艺;基于支持向量机对间歇过程的建模及控制[J];化工管理;2005年06期
中国重要会议论文全文数据库 前10条
1 林杰华;张斌;李冬森;宋华茂;余志强;王浩;;支持向量机在电力客户信用评级中的应用[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
2 蒋铁军;张怀强;李积源;;多变量系统预测的支持向量机方法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年
3 黄淑云;孙兴玉;梁汝萍;邱建丁;;基于小波支持向量机预测蛋白质亚细胞定位研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
4 谢湘;匡镜明;;支持向量机在语音识别中的应用研究[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
5 涂冬成;薛龙;刘木华;赵进辉;沈杰;吁芳;;基于支持向量机的鹅肉肉色客观评定研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
6 杨凌;刘玉树;;基于支持向量机的坦克识别算法[A];第三届全国数字成像技术及相关材料发展与应用学术研讨会论文摘要集[C];2004年
7 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年
8 张军;;支持向量机方法在地下水位干扰排除中的初步应用[A];2007年地震流体学术研讨会论文摘要集[C];2007年
9 许建生;盛立东;;基于改进的支持向量机和BP神经网络的识别算法[A];第八届全国汉字识别学术会议论文集[C];2002年
10 荣海娜;张葛祥;张翠芳;;基于支持向量机的非线性系统辨识方法[A];中国自动化学会、中国仪器仪表学会2004年西南三省一市自动化与仪器仪表学术年会论文集[C];2004年
中国博士学位论文全文数据库 前10条
1 刘叶青;原始空间中支持向量机若干问题的研究[D];西安电子科技大学;2009年
2 常甜甜;支持向量机学习算法若干问题的研究[D];西安电子科技大学;2010年
3 胡运红;支持向量机的若干算法研究[D];山东科技大学;2011年
4 杜小芳;基于CPFR的农产品采购模型研究[D];华中科技大学;2005年
5 刘育明;动态过程数据的多变量统计监控方法研究[D];浙江大学;2006年
6 栾锋;支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D];兰州大学;2006年
7 孙薇;市场条件下抽水蓄能电站效益综合评价及运营模式研究[D];华北电力大学(河北);2007年
8 常群;支持向量机的核方法及其模型选择[D];哈尔滨工业大学;2007年
9 周喜川;非可信环境下的支持向量机研究[D];浙江大学;2010年
10 赵莹;半监督支持向量机学习算法研究[D];哈尔滨工程大学;2010年
中国硕士学位论文全文数据库 前10条
1 刘艳伟;支持向量机方法在感潮河段洪峰水位预报中的应用[D];浙江大学;2010年
2 杨镭;支持向量机算法设计及在高分辨雷达目标识别中的应用[D];国防科学技术大学;2010年
3 童振;基于支持向量机的电解液成分预测[D];东北大学;2008年
4 聂小芳;模糊粗糙集与支持向量机在煤与瓦斯突出预测中的应用研究[D];辽宁工程技术大学;2009年
5 鄢常亮;基于支持向量机的高炉向凉向热炉况预测研究[D];内蒙古科技大学;2010年
6 韩叙东;基于支持向量机的水电故障分类器的设计与实现[D];东北大学;2008年
7 冯杰;慢时变对象的支持向量机建模与在线校正方法研究[D];东北大学;2009年
8 朱耿峰;支持向量机在冲击地压预测模型中的应用研究[D];山东科技大学;2010年
9 王奇安;基于广泛内核的CVM算法研究及参数C的选择[D];南京航空航天大学;2009年
10 张永新;基于支持向量机和遗传算法相结合的模拟电路故障诊断方法研究[D];东北大学;2009年
中国重要报纸全文数据库 前10条
1 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年
2 李水根;计算机详解配伍与药效关系[N];健康报;2005年
3 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年
4 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年
5 上海大学理学院教授、副院长 陆文聪;酷爱化学 孜孜以求[N];中国化工报;2006年
6 ;选择合适的数据挖掘算法[N];计算机世界;2007年
7 周颖;王米渠与中医心理学[N];中国中医药报;2006年
8 记者 耿挺;蛋白质功能算出来[N];上海科技报;2007年
9 记者 张云普通讯员 全攀峰 安强强;大庆物探深度域地震资料岩性解释技术获得五大突破[N];中国石油报;2008年
10 本报记者 冯治恩;敢与“雷公”试比高[N];铜川日报;2008年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978