基于模糊逻辑的图像处理算法研究
【摘要】:本文首先概要地介绍了数字图像处理的基本概念、基本理论、基本方法以及它们在实际中的应用;然后介绍了模糊数学理论的基本概念与基本理论;在此基础上提出了一些基于模糊逻辑的图像处理新方法和新思想,并取得了良好的效果。
主要包括以下六个方面内容:
第一,为克服单一使用中值滤波方法去除脉冲噪声会造成图像细节信息丢失,使图像变模糊的缺陷,本文第三章提出一种基于模糊逻辑的图像去噪算法。该算法通过分析像素不同方向邻域像素灰度值分布情况来检测脉冲噪声点,为更好地保持图像边缘等细节特征,使用改进MMEM(maximum-minimum exclusive median)算法对噪声像素点的灰度值进行估计。最后,新算法通过引入模糊逻辑规则,更加合理地进行噪声污染像素点的灰度值复原。仿真实验表明,与其它改进中值滤波算法相比该算法在去除脉冲噪声时能取得更好的效果。
第二,在研究图像噪声过滤时,为了既有效地去除噪声,又能够较好地保持图像边缘和重要的细节信息,本文第四章将模糊逻辑思想与Perona-Malik方法相结合,提出了一种对噪声图像更有效更有适应性的基于模糊逻辑的偏微分方程去噪算法。该算法把PM方法中扩散方程的扩散系数看作像素梯度对于图像平滑区域的模糊隶属度函数,并通过定义合理的模糊隶属度函数,使得对不同的像素梯度大小采用不同的扩散系数。实验结果表明,该算法在去除噪声的同时,能更好地保持图像的边缘细节,具有较好的处理效果。
第三,本文第五章将粒子群优化算法与模糊C—均值聚类算法相结合,应用于图像边缘检测,以期解决标准FCM算法在图像边缘检测中对初始值敏感及容易陷入局部极小的两大缺陷。首先,基于数学测度概念构造一个描述边缘点信息的特征向量,将灰度图像中的每一个像素点看成是一个数据样本,将该点灰度值处理后构成其边缘点信息特征向量,形成具有三维特征的数据集,然后对这个数据集应用粒子群模糊聚类算法进行分类,自适应地检测出图像的边缘点,达到提取边缘的目的。仿真实验表明,此算法具有良好的抗噪性能,能够得到较好的边缘效果,提高了边缘定位的精度。
第四,本文第六章在分析Pal模糊边缘提取算法的基础上,为克服Pal算法图像增强区域单一、图像增强后造成低灰度信息损失且没有做抑噪处理的缺陷,提出一种新的基于模糊增强的图像边缘提取算法。新算法通过引入模糊熵,进行有目的选取不同灰度层次的阈值,同时增强图像中不同灰度层次的边缘信息,通过定义新的隶属函数和一种新的模糊增强算子,结合图像平滑滤波处理进行图像边缘提取,有效地克服了Pal算法速度慢且损失图像部分灰度信息的缺陷,取得了优于基于传统Pal算法进行图像边缘提取的效果。
第五,在第七章为确定图像分割的最佳阈值,本文提出了一种新的有效的图像阈值分割方法。该方法首先给出一个新模糊熵的定义,这个模糊熵定义不仅考虑到图像在模糊域中划分区域时随隶属函数变化而变化的情况,同时也考虑到图像在空域中划分区域时随隶属函数变化而变化的情况,这样就使得图像依照最大熵准则变换到模糊域更能够有效地反映图像的固有信息。然后,采用自适应粒子群优化算法寻求隶属函数的最优参数,得到分割的最佳阈值,并用该阈值对图像进行分割。将新算法应用于图像分割中,取得了优于现有大多数阈值分割算法的效果。
第六,本文第八章提出了一种新的图像阈值分割方法,该方法首先给出模糊连通度定义。然后,采用图像划分测度作为区分目标和背景的阈值分割准则,计算图像划分测度时采用基于灰度级的权值矩阵来代替通常所用的基于像素的权值矩阵来描述图像中各像素之间的关系,从而减少算法实现的复杂性,提高算法运算速度。仿真实验结果表明:与现有大多数模糊阈值分割方法相比,本章提出的方法更具优越性。
|
|
|
|
1 |
吴守宪;模糊控制器的应用[J];西南民族学院学报(自然科学版);1994年02期 |
2 |
梁天培,周其节,毛宗源,于德江;模糊控制器的优化设计方法[J];控制理论与应用;1995年04期 |
3 |
魏海平;建立在神经网络基础上的模糊控制器的设计[J];抚顺石油学院学报;1995年03期 |
4 |
;模糊逻辑简介[J];电子产品世界;1997年01期 |
5 |
薛家祥,黄石生,余英林;神经网络模糊逻辑的软硬件技术[J];控制理论与应用;1998年06期 |
6 |
罗远秋,朱威同,刘洪松;模糊神经网络的研究现状及发展前景[J];山东电子;1999年02期 |
7 |
吕建平,赵树芗;模糊逻辑中一些问题的探讨[J];西安邮电学院学报;1999年01期 |
8 |
李玉翔;用组合模糊控制器实现液压缸位置调节[J];机床与液压;2001年03期 |
9 |
周豪进,窦金生;模糊神经网络控制系统[J];重庆邮电学院学报(自然科学版);2001年03期 |
10 |
霍志红,唐必光,张志学;PID参数的模糊整定[J];电站系统工程;2002年02期 |
11 |
鲁斌;逻辑神经元研究综述[J];微机发展;2005年11期 |
12 |
周善琼;改进型的二段法自动模糊推理算法[J];华东理工大学学报;1985年04期 |
13 |
韩慧君;蒋馥;;群体决策支持系统中一致性处理方法[J];上海交通大学学报;1992年05期 |
14 |
吴连伟,秦勇;工业控制系统中的模糊逻辑─—综述[J];计算机仿真;1995年04期 |
15 |
远译;模糊逻辑型快速传真机[J];电信快报;1997年02期 |
16 |
宋雨,王德文;基于模糊逻辑的控制软件辅助开发工具研究[J];华北电力大学学报;1999年04期 |
17 |
刘桂英,粟时平;模糊逻辑在有源电力滤波器智能控制中的应用[J];电气开关;2003年01期 |
18 |
王敏,高翔,李宏伟;模糊逻辑及遗传算法在入侵检测中的应用[J];仪器仪表学报;2003年S2期 |
19 |
钱峰,田蔚风,杨艳娟,金志华;基于模糊逻辑的Markov链模型辨识方法[J];上海交通大学学报;2004年08期 |
20 |
刘春平;神经网络的应用与发展[J];电子工艺技术;2005年06期 |
|