收藏本站
《东北大学》 2008年
收藏 | 手机打开
二维码
手机客户端打开本文

基于结构Lyapunov矩阵的静态输出反馈鲁棒优化控制

苏敏敏  
【摘要】:静态输出反馈是控制理论和应用中最基本的问题之一。由于在实际控制系统中,系统的状态变量常常不能全部测量或者测量代价昂贵,在这种情况下,常采用输出反馈。静态输出反馈控制结构简单,易于物理实现,成本低,可靠性高。此外,降阶控制问题也可以转化为特定形式的静态输出反馈问题。因此,静态输出反馈问题具有十分重要的理论意义和应用价值。 本文主要研究了线性系统的静态输出反馈镇定问题。把系统进行适当的坐标变换后,基于构造具有特殊结构的Lyapunov矩阵,将静态输出反馈问题转化为求解线性矩阵不等式(Linear Matrix Inequalities, LMIs)的凸优化问题,并在此基础上进一步给出了控制器存在的充分条件和设计方法。主要成果如下: 首先,研究了线性时不变(Linear Time-invariant, LTI)系统的静态输出反馈镇定问题。提出一个基于构造结构Lyapunov矩阵的静态输出反馈镇定算法,并将这种算法运用于H∞和H2以及混合H2/H∞控制器的设计。利用LMI方法,可以直接求解出控制器的输出反馈增益。 其次,针对范数有界不确定参数的线性不确定系统,基于结构Lyapunov矩阵和S-procedure,给出一个静态输出反馈镇定问题有解的充分条件,在此基础上进一步研究了鲁棒H∞和H2控制器以及H2/H∞最优保性能控制器的设计方法,并最终将问题转化为易于求解的LMIs问题或LMIs约束的凸优化问题。 最后,研究了离散时间系统的静态输出反馈镇定问题以及H∞和H2控制器的设计方法。通过构造结构Lyapunov矩阵,以LMI的形式给出一个静态输出反馈镇定镇定算法,并且将该算法推广到H∞和H2控制器的设计中。 本文的理论核心是:将给定系统进行适当的坐标变换,通过构造结构Lyapunov矩阵,把静态输出反馈问题转换为易于求解的LMI凸优化问题。 以上所有结论均通过仿真示例证明了其可行性和有效性。
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TP13

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 李德权,许仙珍,费树岷;基于LMI的不确定混沌系统的模糊输出反馈控制[J];系统仿真学报;2005年02期
2 孙翔,王子栋,郭治;离散随机系统的一类综合控制[J];火力与指挥控制;1996年02期
3 王金枝,张纪峰;线性系统静态输出反馈镇定的LMI方法(英文)[J];控制理论与应用;2001年06期
4 巩长忠,刘全利,王伟;模糊不确定时滞系统的静态输出的反馈镇定:迭代线性矩阵不等式方法[J];控制理论与应用;2004年04期
5 陈娟;方寿海;;Lyapunov在电荷泵锁相环设计中的应用[J];微计算机信息;2008年32期
6 董心壮,张庆灵,郭凯;离散广义系统的静态输出反馈H_∞控制[J];东北大学学报(自然科学版);2002年11期
7 林文森;李钟慎;;参数不确定的永磁同步电动机混沌运动的控制[J];自动化技术与应用;2008年08期
8 邹晓光;王显金;;带时间延迟的Cohen-Grossberg神经网络全局鲁棒稳定性的一个结果(英文)[J];生物数学学报;2011年03期
9 葛愿;刘振安;陈其工;江明;;具有通信约束的网络控制系统稳定性研究(英文)[J];中国科学技术大学学报;2008年03期
10 马松辉;陈怀民;王鹏;;静态输出反馈控制的一种数值解法[J];信息与控制;2010年02期
中国重要会议论文全文数据库 前10条
1 ;Finite-Time Stability of Stochastic Systems via Vector Lyapunov Functions[A];中国自动化学会控制理论专业委员会C卷[C];2011年
2 李群宏;陈玉明;;两自由度双侧约束对碰系统的Lyapunov指数谱与分岔研究[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
3 ;On Exponential Stability for Linear Switched Stochastic Systems:Multiple Lyapunov Functions Approach[A];中国自动化学会控制理论专业委员会C卷[C];2011年
4 匡森;丛爽;;Lyapunov控制设计下混合态量子系统的轨线极限点特征[A];第二十九届中国控制会议论文集[C];2010年
5 DIMIROVSKI Georgi M.;;Switching Control for LPV Polytopic Systems Using Multiple Lyapunov Functions[A];中国自动化学会控制理论专业委员会B卷[C];2011年
6 ;Nonquadratic Lyapunov Function Based H_∞ Control Law Design for Time-delay Fuzzy Systems[A];第二十七届中国控制会议论文集[C];2008年
7 ;Parameter-Dependent Lyapunov Function Method Applied to Satellite Formation Keeping Control[A];第二十七届中国控制会议论文集[C];2008年
8 ;Lyapunov-Design of Adaptive Air-Fuel Ratio Control for Gasoline Engines based on Mean-Value Model[A];中国自动化学会控制理论专业委员会A卷[C];2011年
9 陈超;于达仁;鲍文;赵军;;基于多Lyapunov函数方法的航空发动机安全保护切换控制[A];第二十九届中国控制会议论文集[C];2010年
10 李清都;陈述;;基于QR法的分数阶系统Lyapunov指数的改进算法[A];第二十九届中国控制会议论文集[C];2010年
中国博士学位论文全文数据库 前10条
1 周彬;具有饱和非线性的控制系统设计的参量Lyapunov方法及其应用[D];哈尔滨工业大学;2010年
2 丁修勇;切换正系统的Lyapunov函数存在性问题研究[D];电子科技大学;2012年
3 徐晓惠;基于矢量Lyapunov函数法的复杂系统的稳定性分析[D];西南交通大学;2012年
4 罗自炎;Lyapunov-type对称锥规划[D];北京交通大学;2010年
5 李江荣;模糊系统的广义H_2控制[D];西安电子科技大学;2012年
6 张启明;离散Hamilton系统的Lyapunov型不等式及稳定性[D];中南大学;2012年
7 张果;基于T-S模型的非线性系统的模糊控制[D];西安电子科技大学;2009年
8 祝庚;切换线性系统的分段聚合与优化设计[D];华南理工大学;2012年
9 丁大伟;线性切换系统的若干问题研究[D];东北大学;2010年
10 陈旭;离散动力系统反馈混沌化与控制算法的研究[D];华南理工大学;2010年
中国硕士学位论文全文数据库 前10条
1 苏敏敏;基于结构Lyapunov矩阵的静态输出反馈鲁棒优化控制[D];东北大学;2008年
2 郑煜;奇异系统的静态输出反馈控制[D];山东大学;2011年
3 徐昊;静态输出反馈镇定控制器的设计[D];青岛大学;2011年
4 刘春美;Lyapunov方法在系统稳定性理论上的应用[D];东北师范大学;2010年
5 蒋楠;混沌系统Lyapunov指数与同步的研究[D];太原理工大学;2011年
6 付华;非线性系统的Lyapunov函数构造及稳定性分析[D];延安大学;2012年
7 陈浩然;基于复合Lyapunov函数的一类非线性切换系统的稳定性[D];郑州大学;2010年
8 满会;基于输入输出有限时间稳定的奇异系统静态输出反馈控制[D];山东大学;2012年
9 王良;非线性参数变化系统的控制与滤波[D];杭州电子科技大学;2011年
10 孙苏亚;扰动离散Lyapunov矩阵方程[D];南京信息工程大学;2011年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026