保护地土壤酸度特征及酸化机理研究
【摘要】:
保护地集约化栽培,复种指数高、大量施用化肥,加上缺少雨水淋洗、温度高等特殊环室内境条件,致使保护地使用若干年后,酸化、次生盐渍化、养分不平衡等诸多土壤退化问题随之产生。本文选择辽宁地区典型保护地作为研究对象,自辽宁西部的朝阳市、东部的丹东市和清源县、北部的铁岭市、中部的沈阳市东陵区和于洪区,采集不同类型、不用利用年限和不同深度层次的保护地土壤样品,采用室内分析化验和数理统计分析的方法,从土壤pH的地区分布及剖面分异、土壤活性酸度和潜在酸度、有机质含量及盐分含量及土壤离子组成等方面,对保护地土壤酸化的特征、原因、过程、机理进行了较为系统地研究,探讨了保护地土壤盐分积累及其组成变化与土壤酸化的关系。
1.保护地土壤酸度现状
按地区分类辽宁地区保护地土壤pH值高低排列顺序为:朝阳地区>清源地区>铁岭地区>丹东地区>沈阳东陵地区>沈阳于洪地区。
就同一地区土壤而言,丹东地区保护地土壤pH值随着由露地改为保护地后使用年限的增长而上升,其它地区保护地土壤pH则随着改为保护地使用年限增长而下降,即表现出酸化趋势,且几乎每一地区均有pH值小于5.50的土壤样品出现。显然这与改作保护地前当地土壤pH有关。用作保护地前中性和碱性土壤pH下降,而酸性土壤pH值上升。
就同一地点、不同深度层次土壤而言,朝阳、铁岭、沈阳东陵和于洪地区保护地土壤pH值均呈现0~20cm土层<20~40cm土层<40~60cm土层<60~80cm土层的分布规律。表层土壤(0~20cm)的pH值要远远低于其下各层次土壤;20cm以下各层次间土壤pH值的差异较小,至80cm深处已经近露地土壤pH值。而丹东、清源两地保护地0~80cm各土层土壤的pH值则表现为表层高于下层、即随着土层深度的增加其pH值逐渐降低的趋势。
就同一地点、同一深度层次、不用种植年限的土壤而言,随着种植年限的增加,保护地土壤的pH值是持续下降的,但是在前1~4年左右下降速度缓慢,甚至有所上升;其后随着保护地种植年限的延长,pH值下降速度加快。
2.保护地土壤酸化特征
露地改为保护地栽培蔬菜后,土壤活性酸、交换性酸(EA)、非交换性酸(NEA)含量和交换性盐基(EB)总量、阳离子交换量(CEC)明显增加,且表层土壤增加趋势比下层明显,但盐基饱和度(BS)下降。土壤pH与EA、NEA呈极显著负相关关系,与EB呈极显著正相关关系;统计分析结果表明,土壤pH的变化主要取决与EA,而受NEA和EB的影响相对较小,土壤NEA含量较露地明显增加且一般都大于EA。
EA总量不同,土壤中交换性H~+、Al~(3+)的相对比例随之变化;在EA<0.75cmol kg~(-1)时以交换性H~+占优势,而当EA>0.75cmol kg~(-1)时则以交换性Al~(3+)为主。
保护地土壤CEC、土壤NEA与土壤有机质含量均呈极显著正相关关系。
保护地上层和下层土壤中交换性盐基总量(EB)、交换性K~+、交换性Mg~(2+)、交换性Na~+含量均高于露地相应层次的土壤,而交换性Ca~(2+)含量与露地比较则表现出减少的趋势,但Ca~(2+)在交换性盐基中仍占优势地位;交换性Ca、Mg、K、Na又与水溶性Ca、Mg、K、Na呈极显著正相关关系。
保护地土壤pH与BS、特别是Ca~(2+)饱和度呈显著正相关关系。与露地土壤相比,保护地土壤盐基饱和度BS和Ca~(2+)饱和度下降是导致土壤pH降低的重要因素。
3.保护地土壤酸缓冲性能
作为保护地的种植年限越长,土壤pH值越低,土壤酸害容量(达到植物受害pH值所需要的酸)越小;越容易对作物产生酸害。
不同种植年限保护地土壤和露地土壤的酸缓冲性能曲线相似,但斜率各不相同。露地土壤pH酸缓冲性能曲线斜率绝对值最大,加入等量酸后pH下降幅度最大,即土壤酸害强度(土壤对酸的承受能力)越小;而作为保护地种植年限越久,酸缓冲性能曲线斜率绝对值最小,加入等量酸后土壤pH下降的越慢,土壤酸害强度越大。土壤酸害强度与有机质含量及阳离子交换量均呈极显著的正相关关系。
4.保护地土壤酸化的影响因素
(1)土壤有机质含量。土壤有机质含量较露地土壤大幅度提高是影响保护地土壤酸化的重要因素之一;土壤有机质含量增加,使保护地土壤的非交换性酸含量提高、酸缓冲能力上升。
(2)土壤含盐量。保护地土壤pH值与含盐量呈极显著对数负相关关系,即土壤pH值随着土壤含盐量的增加而降低。保护地土壤的盐分含量随着作为保护地种植年限的延长而不断增多,由露地改为保护地10年左右供试表层土壤的平均含盐量从0.29g kg~(-1)上升至1.56g kg~(-1),EC值达到0.53mS cm~(-1),已超过作物的生育障碍临界点(EC>0.50mS cm~(-1))。盐分含量随土层深度增加而降低。
(3)盐分离子组成。露地改为保护地栽培蔬菜后,土壤盐分含量增加,其中NO_3~-、SO_4~(2-)、Cl~-和Ca~(2+)、Mg~(2+)、Na~+、K~+均有不同程度的增加,而HCO_3~-则减少。阴离子以NO_3~-和SO_4~(2-)为主,阳离子以K~+和Ca~(2+)为主。供试表层土壤有的NO_3~-含量已高达0.66g kg~(-1),是露地土壤的29倍。而阳离子以K~+增加最为显著。统计分析结果表明,NO_3~-、SO_4~(2-)等强酸性阴离子特别是NO_3~-含量在全盐含量中所占比例上升,HCO_3~-、Na~+等盐基离子在全盐中的相对比例下降是导致土壤pH值下降的重要因素。
综上所述,特殊的保护地室内水热条件、过量施肥和连年高强度利用,致使土壤有机质含量积累、土壤盐分含量上升和盐分离子组成及其比例改变,构成了新的土壤酸平衡体系;硝酸根、硫酸根和钙、钾等阳离子的增加及其比例改变,是导致土壤pH上升或者下降的直接原因。为了实现作物高产、优质和防治保护地土壤退化,应控制化肥和有机肥用量,合理地选择土壤水分管理技术,并辅以轮作、揭棚淋洗等措施,则是十分重要和必要的。
|
|
|
|
1 |
易杰祥;吕亮雪;刘国道;;土壤酸化和酸性土壤改良研究[J];华南热带农业大学学报;2006年01期 |
2 |
王秋杰;白乐高;;氮素化肥致使土壤酸化板结的原因及对策[J];河南科技;1991年07期 |
3 |
徐仁扣;我国降水中的NH_4~+及其在土壤酸化中的作用[J];农业环境保护;1996年03期 |
4 |
王丽艳;;有机土中的酸性沉积物在减少 土壤酸化仍在持续[J];资源环境与工程;2009年02期 |
5 |
李士杏,王定勇;重庆地区20年间紫色土酸化研究[J];重庆师范大学学报(自然科学版);2005年01期 |
6 |
黄连芬,翁建华,刘晓茹,傅朝阳,佐藤一男;松树近旁土壤酸化的二维特征[J];中国环境科学;1998年01期 |
7 |
李洪侠;王德荣;于金龙;;谈菜地土壤酸化的原因、危害及防治措施[J];成功(教育);2008年12期 |
8 |
王代长,蒋新,卞永荣,徐仁扣,贺纪正;酸沉降下加速土壤酸化的影响因素[J];土壤与环境;2002年02期 |
9 |
唐鸿寿;土壤酸化对油松生长的影响[J];应用与环境生物学报;2001年01期 |
10 |
陈明;曹晓娟;谭科艳;牟永明;曹淑萍;冯鑫;冯流;;土壤环境中化学定时炸弹的研究现状与展望[J];地质学报;2006年10期 |
11 |
杨艳;王昌全;李冰;杨娟;;土壤酸化与土地资源可持续利用研究[J];安徽农业科学;2006年16期 |
12 |
王明刚;;滦南县菜地土壤酸化及次生盐渍化的现状与对策[J];河北农业科技;2008年07期 |
13 |
董昭皆;肖忠义;;荣成市土壤酸化现状及改良措施[J];山东农业科学;2009年02期 |
14 |
余涛;杨忠芳;唐金荣;宗思锋;朱翠娟;张娇;张建新;申志军;;湖南洞庭湖区土壤酸化及其对土壤质量的影响[J];地学前缘;2006年01期 |
15 |
杨忠芳;余涛;唐金荣;朱翠娟;宗思锋;张娇;张建新;申志军;;湖南洞庭湖地区土壤酸化特征及机理研究[J];地学前缘;2006年01期 |
16 |
王宁;李九玉;徐仁扣;;土壤酸化及酸性土壤的改良和管理[J];安徽农学通报;2007年23期 |
17 |
李贤胜;杨平;卢祖瑶;汤祖明;戴晓晶;;皖南山区土壤酸化趋势研究——以宣城市广德县为例[J];土壤;2008年04期 |
18 |
乔长权;韩宗荣;杜江;;秭归县耕地过酸过碱成因及对策[J];湖北植保;2010年05期 |
19 |
刘新卫,张定祥,查良松;武进市水稻土酸化研究[J];安徽师范大学学报(自然科学版);2002年02期 |
20 |
刘志华;;水稻土酸化原因与改良对策[J];福建农业;2011年07期 |
|