收藏本站
《吉林大学》 2006年
收藏 | 手机打开
二维码
手机客户端打开本文

以时滞为参数向日葵方程离散格式的Neimark-Sacker分支

刘飞  
【摘要】:利用时滞微分方程刻画的动力系统称为时滞微分动力系统,时滞微分动力系统广泛的出现在自然科学和社会科学的各个领域,其对客观事物的刻画比常微动力系统更全面、更深刻、更丰富,因而有必要对时滞微分动力系统的动力学行为进行仔细研究。由于大多数时滞微分方程无法得到解析解,这使得时滞微分方程的数值处理方面的研究显得尤为重要。从动力系统的角度分析,解时滞微分方程的数值计算方法应该保持原时滞微分动力系统的动力行为。本文以用滞量作参数的向日葵方程为例,对时滞量参数r直接进行分划来构造解时滞微分方程的向前Euler法,并利用对表示向日葵方程的特征方程的矩阵和表示向前Euler法特征方程的矩阵直接进行分析,给出了当向日葵方程在参数r=r_0处产生Hopf分支时,求解该方程的向前Euler法在参数r=r_0+O(h)处产生Neimark-Sacker(即第二类Hopf)分支。
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2006
【分类号】:O193

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 程远纪;一类时滞微分方程的稳定度[J];科学通报;1986年09期
2 徐志庭;二阶时滞微分方程极限圆型的判定[J];广东工业大学学报;1994年01期
3 高英,张广;具有正负系数中立型时滞微分方程的振动性[J];工程数学学报;1997年04期
4 燕居让,张全信;二阶非线性时滞微分方程振动性的新结果[J];山西大学学报(自然科学版);1994年01期
5 卢飞雁;二阶非线性时滞微分方程的振动性[J];湛江师范学院学报(自然科学版);1998年02期
6 刘玉记,周利麟;非自治多时滞微分方程的渐近稳定性[J];烟台师范学院学报(自然科学版);2000年03期
7 李林;时滞对数学模型的影响[J];北京石油化工学院学报;2000年01期
8 梁建秀,陈斯养;三阶时滞微分方程无条件稳定的判定[J];陕西师范大学学报(自然科学版);2001年01期
9 张志红;一类具有脉冲的时滞微分方程解的渐近性[J];佛山科学技术学院学报(自然科学版);2002年01期
10 张志红,胡满佳;一类具有脉冲的时滞微分方程的全局吸引性[J];四川师范大学学报(自然科学版);2003年03期
中国重要会议论文全文数据库 前10条
1 曹进德;黄永明;;受迫向日葵方程的周期解[A];数学·物理·力学·高新技术研究进展(一九九六·第六期)——中国数学力学物理学高新技术交叉研究会第6届学术研讨会论文集[C];1996年
2 米玉珍;余秀萍;牛连杰;;二阶非线性中立型时滞微分方程的振动定理[A];第六届中国青年运筹与管理学者大会论文集[C];2004年
3 赵爱民;燕居让;;一类带强迫项非线性时滞微分方程解的渐近性[A];数学·物理·力学·高新技术研究进展——1998(7)卷——中国数学力学物理学高新技术交叉研究会第7届学术研讨会论文集[C];1998年
4 林诗仲;俞元洪;;高阶时滞差分方程的振动性和渐近性[A];数学·力学·物理学·高新技术研究进展——2004(10)卷——中国数学力学物理学高新技术交叉研究会第10届学术研讨会论文集[C];2004年
5 李俊余;王在华;;非线性复时滞系统的局部Hopf分岔[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文集[C];2007年
6 邓飞其;冯昭枢;刘永清;;非线性时滞系统的稳定性[A];1995中国控制与决策学术年会论文集[C];1995年
7 徐鉴;;时滞导致的双Hopf分岔、分岔解及其分类——一种新的定性和定量方法[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
8 张研研;徐鉴;;时滞van der Pol-Duffing系统非共振双Hopf分岔分类及其分岔解计算[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
9 张丽;王怀磊;胡海岩;;时滞位移反馈下Duffing系统的周期运动及其稳定性数值分析[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
10 李俊余;王在华;;非线性复时滞系统的局部Hopf分岔[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
中国博士学位论文全文数据库 前10条
1 周霞;随机时滞微分方程的稳定性研究[D];电子科技大学;2011年
2 徐昌进;时滞微分方程的Hopf分支的时域与频域分析[D];中南大学;2010年
3 余国胜;随机时滞微分方程稳定性若干问题的研究[D];华中科技大学;2010年
4 赵维锐;瞬时混沌神经网络和一类时滞微分方程的动力学性质分析[D];复旦大学;2003年
5 王林君;若干时滞微分和差分方程的数值分析[D];吉林大学;2010年
6 刘斌;时滞微分方程周期解与微分方程边值问题的研究[D];湖南大学;2001年
7 王晓萍;时滞微分、差分方程解的振动性[D];湖南大学;2006年
8 韦志坚;单调方法在时滞微分方程中的应用[D];湖南大学;2005年
9 王丽丹;多卷混沌发生器的设计、电路实现与应用[D];重庆大学;2008年
10 梁心;牛顿方程的周期解与拟周期解[D];吉林大学;2009年
中国硕士学位论文全文数据库 前10条
1 刘飞;以时滞为参数向日葵方程离散格式的Neimark-Sacker分支[D];吉林大学;2006年
2 刘长青;几类时滞微分方程的振动性[D];湖南师范大学;2010年
3 彼得(Kun Jr. Peter Weah);延迟微分方程特征值的数值方法[D];东北师范大学;2010年
4 郭承军;具多变时滞微分方程(系统)的周期解存在性的研究[D];华南师范大学;2005年
5 巩建辉;带阶段性脉冲捕杀效应的媒介传染病模型[D];信阳师范学院;2011年
6 孙建国;高阶非线性中立型微分方程解的振动性[D];长沙理工大学;2009年
7 Vital Delmas MABONZO;延迟微分方程T-B点的数值计算[D];东北师范大学;2009年
8 陈雪;一类分数微分方程解的存在性[D];哈尔滨工业大学;2010年
9 王晓萍;几类时滞微分方程解的渐近性[D];湖南大学;2003年
10 王经天;几类时滞微分方程解的稳定性分析[D];江苏大学;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026