具有强Allee效应捕食—食饵系统的动力学性质分析
【摘要】:相互作用物种间的模式生成和分布在保护生态方面和生化反应方面有重要的意义,一种典型的作用就是捕食-食饵关系,或者更一般地说为消耗者-资源关系。而这种作用关系体现在数学上的常微分方程(反应扩散方程)组,泛函微分方程组也是非线性微分方程研究领域中重要的方向,其研究方法包括经典的动力系统理论,解析半群方法及拓扑方法等。
当种群具有强Allee效应增长时,此前只有数值上的模拟结果,本文主要对具有强Allee效应的捕食-食饵系统进行了系统的解析分析。不同于Logistic型增长的捕食-食饵系统,强Allee效应使系统具有双稳定性结构,因此很多常用的研究方法用起来存在困难或者不再适用,需要一些改进的方法及一定的构造性技巧,本文主要工作如下:
1.对常微分系统进行了详细的全局双稳定动力学分析,以正平衡点的第一个分量为参数,得到了两个全局分支值:异宿轨道环分支值和Hopf分支值。在参数不同的取值范围内分别得到了相应的全局稳定的零平衡点、唯一的异宿轨道环、全局双稳定的零平衡点和周期轨道、全局双稳定的零平衡点和正平衡点及全局双稳定的零平衡点和半平衡点。在证明周期解的不存在性时给出了改进的Dulac函数判断方法,这个结果在具体应用时更为适用。此外,本文还证明了具有其他类型Allee效应的一些捕食-食饵系统还有更丰富的性质,例如多个周期轨道。本文严格的分析可以应用到很多具体的强Allee效应的捕食-食饵模型。其解析结果几乎是最新,最完整的,且不依赖于非线性函数具体的代数形式,并对其它二维常微分方程组的动力学行为分析提供了系统的方法和途径。
2.通过构造上、下解,能量估计等方法研究了具强Allee效应的反应扩散方程组的基本动力学行为,得到了整体解的存在性及渐近性,给出了解的先验估计,并得到了系统的双稳定性及空间齐次和非齐次的周期解。特别地,当捕食者的初始值足够大时,解最终趋于(0,0),这也表明(0,0)总是局部稳定的,即给定食饵的初始值, (0,0)的吸引域包含所有充分大的.因此若存在其他的局部稳定的稳态解或者周期解,则系统是双稳定(或者多重稳定)的;当食饵的初始值小于强效应的门槛值时, (0,0)也是全局渐近稳定的,这是具有强Allee效应的捕食-食饵系统的特征。这些结果也表明强Allee效应从本质上增加了反应扩散方程组时空动力学行为的复杂性。
3.对具有强Allee效应的椭圆方程组进行了详细的分析。利用椭圆方程的正则性估计得到了非常数正稳态解的先验估计及不存在性;分析了平凡稳态解的稳定性和半平凡稳态解的分支情况;由于强Allee效应下的双稳定结构,且系统有非常多的半平凡稳态解分支,因而难以证得稳态解的正下界,常用的Leray-Schauder度理论不能够得到非常数的正稳态解,本文采用的是史峻平和王学峰[1]推广的全局分支理论得到非常数正稳态解的存在性,即空间的模式生成;
4.分别考虑带两个离散滞量的泛函和偏泛函微分方程组的稳定性和分支分析。讨论了滞量对强Allee效应捕食-食饵系统的不稳定性影响,及在此基础上扩散项对系统稳定性的影响。由于Laplace算子的出现,线性化方程对应的特征方程变为可列个超越方程,而每个超越方程都产生可列个Hopf分支临界值??,一般情况下很难判断这些临界值的大小顺序。本文给出了在扩散系数满足一定条件时对应于Laplace算子有限个特征值的临界值??的顺序。并且分析了空间齐次和非齐次的Hopf分支周期解的性质。
|
|
|
|
1 |
赵联庆;刘新国;张庆刚;;碰撞能对基元反应He+H_2~+(v=3,j=1)动力学性质的影响[J];山东科学;2011年01期 |
2 |
边文生,居冠之,邓从豪;变分过渡态理论对Cl+HBr,Cl+DBr,Br+HI及Br+DI反应的研究[J];化学物理学报;1993年06期 |
3 |
李平;汪秉宏;;证券指数的网络动力学模型[J];系统工程;2006年03期 |
4 |
杨健;未来信息技术主角是光子[J];世界发明;2003年11期 |
5 |
崔季平,范秉诚;四氯化钛高温动力学性质的研究[J];科学通报;1987年12期 |
6 |
尹德胜;周永江;潘斌;;微生物植酸酶动力学性质的研究[J];南昌高专学报;2010年01期 |
7 |
陈柳娟,孙建华;功能函数为kx~θ的捕食-食饵系统的定性分析[J];数学学报;2004年04期 |
8 |
闫杰,李慧芳;一类生态系统模型的定性分析[J];鞍山师范学院学报;1999年03期 |
9 |
张平光,赵申琪;具Ⅲ类Holling功能性反应的捕食-食饵系统的极限环[J];高校应用数学学报A辑(中文版);2003年04期 |
10 |
陈晓波,何雪华,张合义,孙寅官;BaFCl:Sm~(2+)中Sm~(2+)的f-f跃迁的动力学性质[J];光谱学与光谱分析;1990年04期 |
11 |
柏灵,李晓月,杨帆,王克;捕食-食饵系统的两种群同时捕获的最优化问题[J];东北师大学报(自然科学版);2001年01期 |
12 |
文贤章;具时滞的捕食-食饵系统的一致持久性[J];数学物理学报;2003年01期 |
13 |
曾琬婷;一类被开发的Kolmogorov系统的定性分析[J];广西科学院学报;2003年02期 |
14 |
刘志军,陈以平,谢坤武;中立型时滞捕食-食饵系统的周期正解[J];湖北民族学院学报(自然科学版);2003年01期 |
15 |
任维栋;耿秀芳;孙凤祥;;固定无花果蛋白酶制备可溶性肽的研究[J];潍坊医学院学报;1993年01期 |
16 |
沈绍伟;一个新的混沌系统分析[J];丽水学院学报;2005年05期 |
17 |
江少林;;刚性细杆上的共轭点[J];物理与工程;2008年01期 |
18 |
肖宇飞;王登龙;王凤姣;颜晓红;;非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质[J];物理学报;2006年02期 |
19 |
刘建国;丛威;张秀红;欧阳藩;;新型固定化青霉素酰化酶的动力学性质[J];无锡轻工大学学报;1999年05期 |
20 |
王云良;倪晓东;申江;钱萍;张禹;;磁化等离子体中相对论磁声孤立波的动力学性质[J];金属世界;2009年S1期 |
|