收藏本站
《哈尔滨工业大学》 2016年
收藏 | 手机打开
二维码
手机客户端打开本文

融入背景知识的篇章语义分析方法研究

张牧宇  
【摘要】:篇章语义分析以获取篇章级语义信息为目标,以篇章语义结构分析和篇章语义内容分析为主要内容,是一个新兴的研究热点。目前,篇章语义分析研究主要关注如何挖掘原文内容语义信息。实际上,根据认知心理学中的联想主义理论,原文并不能脱离背景知识而存在,缺少背景知识必定会影响对原文语义的分析与理解。为了更好地进行篇章语义分析,融入背景知识是必不可少的辅助手段。本文首先在背景知识获取方面切入,出基于搜索引擎的篇章背景知识联想模型,并在其基础上进一步改进出基于分布式语义的篇章背景知识联想模型,赋予机器获取背景知识的能力;随后,将背景知识融入篇章语义分析研究最重要的两个方面:篇章语义结构分析和篇章语义内容分析,并相应地探索了篇章语义关系分析和篇章语义连贯性分析两个子问题,其中篇章语义关系分析研究以获取篇章语义结构信息为目标,篇章语义连贯性分析则以篇章语义内容信息为分析对象。本文主要研究内容可概括如下:1.基于搜索引擎的篇章背景知识联想研究本文出基于搜索引擎的篇章背景知识联想模型,采用“Subject,Predicate,Object”(主语,指示词,宾语)三元组作为知识表示方案,从人工构建知识库和自动抽取知识库中引入背景知识候选。本文出基于三元组关联网络的篇章表示方案,将背景知识候选和原文信息统一表示起来,并进一步引入搜索引擎作为资源,出基于权重传播的排序模型计算背景知识候选与原文的相关性,依此对背景知识候选进行排序。在评价方面,我们采用排序问题的方式评估模型性能,并采用人工标注的方式判定结果。实验结果显示:本文最终获得MAP值为0.676,P@20值为0.417,取得了较好的性能。2.基于分布式语义的篇章背景知识联想研究为了弥补上文方法计算效率低、评价不够完整等缺点,本文进一步出基于分布式语义的篇章背景知识联想模型。本文利用主题模型和深度学习等方法将背景知识候选和原文信息同时转换为质密的实值向量,并使用向量运算代替搜索引擎计算结点之间的语义相关度。本文随后采用改进的权重传播模型对背景知识候选进行排序,并选出相关性较高的背景知识引入文本分类任务中,通过基于任务的评价方式验证背景知识联想模型的分析效果。实验结果显示:该模型在背景知识引入上取得的MAP值为0.649,P@5值为0.5596;同时,通过引入背景知识使得文本分类模型性能高2.55%。3.融入背景知识的中文篇章语义关系研究之后,本文将背景知识融入篇章语义分析的重要方面:篇章语义结构分析,并通过探索篇章语义关系分析任务来获取篇章语义结构信息。考虑到中文篇章关系分析尚无成熟的任务定义和语料资源,本文首先出面向中文的篇章关系任务及关系类型体系,并探索大规模篇章关系语料资源的构建方法,出句群、复句、分句的三层标注方案,构建包含1096篇文档、超过两万个实例的高质量中文资源。随后,本文融合背景知识信息,探索了显式篇章关系识别和隐式关系识别,并将结果应用于倾向性分析任务中,取得了较好的效果,同时为后续研究供了资源基础和模型参考。4.融入背景知识的篇章语义连贯性分析研究本文在篇章语义关系分析的基础上更进一步,将背景知识融入篇章语义分析的另一个重要方面:篇章语义内容分析,并通过探索篇章语义连贯性分析任务来获取篇章语义内容信息。给定一篇待分析的文章,本文使用前文介绍的方法获取背景知识,并将其融入已有连贯性分析模型中,包括基于图的无指导模型和基于实体的有指导模型两类。我们在句子排序和摘要连贯性评估两个任务上测试模型,实验结果显示:融合背景知识的无指导、有指导两类模型,在两个任务上均获得了非常显著的性能升,证明了本研究的实际价值。综上,本文在背景知识获取和融入背景知识的篇章语义分析两方面都做了尝试并取得一定成果,希望本文融入背景知识来支持相关研究的思路能对其他研究人员有所启发。在本文的部分工作中,为了更好地与已有研究进行对比,我们的实验针对英文语料展开,但需要指出的是本文所出的方法并没有语言依赖性。相信随着自然语言处理技术的进步,以及各种资源的不断丰富,背景知识获取和原文语义分析方法都将不断进步,并进而促进机器翻译、自动问答、倾向性分析、自然语言生成、以及自动文摘等相关研究的进一步发展。
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.1

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 钱鹏;隐喻与语义分析[J];情报杂志;2004年11期
2 张文秀;陈伟;朱庆华;;基于本体的语义分析过程与方法的研究应用[J];计算机应用研究;2011年03期
3 戚世远;英汉机器翻译中的语义分析[J];计算机应用;1991年05期
4 梁尧,杨家沅;语音理解中语法与语义分析的方法与实现[J];四川大学学报(自然科学版);1992年02期
5 戚世远;;英汉机器翻译中的语义分析[J];计算机应用与软件;1993年04期
6 周皓东;刘炜;;基于隐含语义分析的音乐检索[J];计算机工程与设计;2013年06期
7 王建波 ,曹福民 ,宋清秀;VAX/VMS Ada编译语义剖析[J];计算机工程与设计;1989年06期
8 柏建普;田芳;;基于语义分析的微博热点话题发现技术研究[J];内蒙古科技大学学报;2013年03期
9 李良炎,何中市,易勇;基于词联接的语义分析原理及其算法[J];重庆大学学报(自然科学版);2004年08期
10 魏维;邹书蓉;刘凤玉;;基本声音语义分析与提取技术研究[J];小型微型计算机系统;2007年09期
中国重要会议论文全文数据库 前10条
1 陈小芳;张桂平;蔡东风;叶娜;;基于统计和规则相结合的汉语术语语义分析方法[A];第六届全国信息检索学术会议论文集[C];2010年
2 王金龙;;文艺学中形式范畴的语义分析[A];中国中外文艺理论学会年刊(2008年卷)——理论创新时代:中国当代文论与审美文化的转型[C];2008年
3 潘新玲;;我的地盘——表总括的“都”的语义分析及其左邻右舍的限制[A];2007年福建省辞书学会第18届年会论文提要集[C];2007年
4 梁垚;杨家沅;;英语连续语音识别中语法及语义分析的研究与实现[A];第一届全国语言识别学术报告与展示会论文集[C];1990年
5 车万翔;刘挺;李生;;浅层语义分析[A];全国第八届计算语言学联合学术会议(JSCL-2005)论文集[C];2005年
6 张惠春;由丽萍;谷波;刘开瑛;;面向框架语义分析的汉语句法分析模型[A];全国第八届计算语言学联合学术会议(JSCL-2005)论文集[C];2005年
7 董宪臣;;非“给予”义双宾动词的语义分析——兼谈“吃了他三个苹果”一类结构的性质[A];学行堂文史集刊——2011年第2期[C];2011年
8 车万翔;刘挺;李生;;自动浅层语义分析[A];中文信息处理前沿进展——中国中文信息学会二十五周年学术会议论文集[C];2006年
9 时达明;林鸿飞;;基于内容相关度和语义分析的Blog热点话题发现[A];内容计算的研究与应用前沿——第九届全国计算语言学学术会议论文集[C];2007年
10 贾君枝;刘焘;李景峰;;基于Web保险信息的语义分析初探[A];全国第八届计算语言学联合学术会议(JSCL-2005)论文集[C];2005年
中国重要报纸全文数据库 前4条
1 李静;基于数据挖掘与语义分析 创新功能革新体验[N];科技日报;2013年
2 郭贵春;语义分析方法论的核心及其战略转向[N];中国社会科学院报;2009年
3 樊洪业;科学精神的历史线索与语义分析[N];大众科技报;2002年
4 刘仁;“语义分析”升级专利机器翻译[N];中国知识产权报;2008年
中国博士学位论文全文数据库 前9条
1 张牧宇;融入背景知识的篇章语义分析方法研究[D];哈尔滨工业大学;2016年
2 张良;基于内容的视频情感语义分析关键技术研究[D];北京邮电大学;2012年
3 李世奇;面向文景转换的中文浅层语义分析方法研究[D];哈尔滨工业大学;2011年
4 姜红;日语多义感觉形容词的语义分析研究[D];北京外国语大学;2013年
5 魏维;基于统计学的视频语义分析与提取技术研究[D];南京理工大学;2006年
6 缪小冬;车辆行驶中的视觉显著目标检测及语义分析研究[D];南京航空航天大学;2013年
7 赵哲峰;基于语义分析方法的视频流媒体大数据技术研究[D];太原理工大学;2013年
8 叶枫;基于制约条件的英语语篇语义分析及构建[D];上海外国语大学;2011年
9 徐尔清;基于中心语驱动短语结构文法的句法和语义分析[D];上海外国语大学;2007年
中国硕士学位论文全文数据库 前10条
1 曹东川;基于概念图的语义分析的研究与应用[D];西安建筑科技大学;2015年
2 付佩;“花”及其参构词语义分析和修辞阐释[D];大连外国语大学;2015年
3 张静;文艺理论核心概念“真实”的语义分析[D];福建师范大学;2015年
4 吴兰娟;中华传统文化核心范畴“圣”的语义分析及文化阐释[D];福建师范大学;2015年
5 苏桂芳;中华传统文化核心范畴“忠”的语义分析及文化阐释[D];福建师范大学;2015年
6 黄亚萍;汉语人名的意义泛化研究[D];南京师范大学;2015年
7 白洁;中华传统范畴“淡”的语义分析及老庄尚淡思想阐释[D];福建师范大学;2015年
8 薛晨虹;“面”和“面”参构词语的语义分析及文化阐释[D];福建师范大学;2014年
9 黄艺蜚;基于本体的港口客户Web语义分析系统研究[D];北京交通大学;2016年
10 陈小芳;汉语术语语义分析技术研究及其应用[D];沈阳航空航天大学;2011年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026