收藏本站
《上海交通大学》 2018年
收藏 | 手机打开
二维码
手机客户端打开本文

若干Moser-Trudinger不等式与其极值问题

周长亮  
【摘要】:Moser-Trudinger不等式是一类很重要的不等式,它在几何分析和偏微分方程解的存在性问题中有着广泛的应用。近二三十年来,Moser-Trudinger不等式及其相应的极值问题已经得到了广泛的研究,取得了丰硕的成果。但是随着带奇点的Liouuille型方程爆破分析的发展,带奇点的Moser-Trudinger 不等式和相应的极值问题再一次成为了几何分析与椭圆偏微分方程的一个研究热点。最近很多数学工作者对Finsler-Laplacian(各向异性的拉普拉斯)方程和Finsler-Liouville型方程展开了研究,在方程的正则性理论和爆破分析理论方面取得了很大的进展,为研究各向异性Moser-Trudinger 不等式提供了 理论基础和研究动机。基于以上基础,本文主要研究了带各向异性范数的Moser-Trudinger不等式和一类带奇点的Moser-Trudinger不等与其相关泛函极大值函数的存在性,并取得了相应的结果。本文的具体内容可概括如下:第一章简要介绍了本文的研究背景以及Moser-Trudinger不等式的研究进展,同时介绍了本文的主要研究内容。第二章介绍了本文相关的预备知识,包括各向异性函数F(x)的性质以及相关各向异性Laplacian方程的正则性理论。第三章主要研究R2中Wullf球上各向异性Moser-Trudinger不等式与极值问题。我们利用爆破分析、水平集方法和凸对称重排方法证明了各向异性Moser-Trudinger不等式和极大值函数的存在性。第四章主要研究R中有界区域上各向异性Moser-Trudinger不等式与其极大值函数的存在性。由于区域的一般性,第三章中的重排方法不再适用。为此,我们建立了各向异性P.Lions引理,从而为爆破分析提供了理论基础,并且完成了定理的证明。第五章主要研究高维无界区域Rn上各向异性Moser-Trudinger不等式与相其极大值函数的存在性。我们利用第四章有界区域上的极大值函数的存在性结果构造了所考虑问题的极大化函数列,再借助各向异性Green函数的渐近展开式和爆破分析技巧,证明了高维无界区域Rn上各向异性Moser-Trudinger不等式和极大值函数的存在性结果。第六章主要研究二维区域上带多个奇点和余项的Moser-Trudinger不等式与相关极值问题的极大值函数的存在性。使用奇点的定位技巧,我们证明了二维有界区域上带多个奇点和余项的Moser-Trudinger不等式与相关极值问题的极大值函数的存在性结果。
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:O178

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 江保兵;;活跃在不等式试题中的几个重要不等式[J];中学数学研究(华南师范大学版);2019年05期
2 邹峰;;研究活跃在不等式试题中的闵可夫斯基不等式[J];中学数学教学;2019年04期
3 李文明;;通法很重要 通俗更精彩——关于若干对称不等式简约证明[J];福建中学数学;2019年06期
4 孙成亮;周成刚;;一道不等式问题的解法赏析[J];高中数学教与学;2016年16期
5 卫小国;;导数中不等式求参问题的解法探究与优化[J];中学数学研究(华南师范大学版);2016年23期
6 江志杰;;求解不等式成立问题的常见策略[J];高中数学教与学;2016年23期
7 黄银珠;;2016年伊朗数学奥林匹克不等式试题的思考[J];福建中学数学;2016年12期
8 江志杰;;略谈不等式成立问题中的函数建构[J];中学数学研究(华南师范大学版);2017年01期
9 江保兵;;构造模型 巧证不等式[J];中学数学研究(华南师范大学版);2017年01期
10 蓝云波;;借力降幂放缩法 巧证数列不等式[J];中学数学研究(华南师范大学版);2017年01期
中国重要会议论文全文数据库 前3条
1 高明哲;;关于用三角法证Hilbert不等式问题研究[A];数学·力学·物理学·高新技术研究进展——2004(10)卷——中国数学力学物理学高新技术交叉研究会第10届学术研讨会论文集[C];2004年
2 丁晓璇;;高中数学不等式易错题型及其解法探讨[A];第三届世纪之星创新教育论坛论文集[C];2016年
3 王园园;;三个版本教材课程编排体系的比较研究[A];2017年“基于核心素养的课堂教学改革”研讨会论文集[C];2017年
中国重要报纸全文数据库 前2条
1 重庆城市交通开发投资(集团)有限公司 许成林;可持续发展要解好两个不等式[N];中国交通报;2019年
2 邓州市第一高级中学 胡丛;数学竞赛中的不等式问题[N];学知报;2011年
中国博士学位论文全文数据库 前1条
1 周长亮;若干Moser-Trudinger不等式与其极值问题[D];上海交通大学;2018年
中国硕士学位论文全文数据库 前10条
1 单华清;计算机图形学中基于不等式估算的若干算法研究[D];杭州电子科技大学;2019年
2 赵婉莹;Gamma函数有关不等式[D];西北大学;2019年
3 廖彩云;初中不等式应用题可视化教学研究[D];广州大学;2019年
4 刘一;核心素养视角下初中生不等式运算水平的实证研究[D];渤海大学;2019年
5 李倩;将数学建模素养融入高中不等式的教学设计研究[D];陕西理工大学;2019年
6 李玉;舒尔不等式在高中数学竞赛中的研究[D];西北大学;2018年
7 许文文;利用导数法证明初等不等式的一些研究[D];西北大学;2018年
8 曹刘莹;利用局部调整法证明初等不等式的一些研究[D];西北大学;2018年
9 陈善桥;高中生对不等式的认知理解研究[D];闽南师范大学;2018年
10 李寒阳;三角函数恒等式与不等式在中学数学中的应用[D];五邑大学;2018年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026