收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

硬质纳米多层膜的微结构与超硬效应

岳建岭  
【摘要】: 以TiN为代表的陶瓷硬质薄膜在包括切削工具涂层在内的表面改性和防护领域得到广泛应用。制造业中高速切削和干式切削等先进技术的发展对刀具提出了更高的要求,需要作为刀具涂层的薄膜材料不仅具有更高的硬度,还应具有优良的高温稳定性。纳米多层膜因超硬效应具有高硬度,特别是它们材料组合的多样性而获得的性能可剪裁性展示了在刀具涂层上的广阔应用前景。而这类材料通过人工微结构设计获得高硬度的强化机制更具理论研究价值。然而,目前尚不能仅从理论上设计出具有超硬效应的纳米多层膜,实验探索仍是获得高硬度纳米多层膜的主要研究方法。 本论文采用磁控溅射技术制备了VN/SiO_2、VN/AlON、ZrO_2/TiN和TiAlN/Si_3N_4等体系的纳米多层膜,采用XRD、TEM、EDX、SEM和微力学探针等先进测试方法表征了薄膜的微结构和力学性能。研究了通过溅射方法获得含氧化物纳米多层膜的制备技术;研究了纳米多层膜中不同晶体结构模板层对另一调制层晶体生长作用的模板效应;研究了纳米多层膜的高温稳定性;讨论了纳米多层膜的超硬机制。并基于所得研究结果对现有高硬度纳米多层膜的设计准则提出了修正和补充。 论文的主要研究结果如下: 1.对VN/SiO_2和VN/AlON纳米多层膜的研究表明,采用金属靶和氧化物陶瓷靶,通过在Ar-N2混合气氛中反应溅射的方法可以高效率地沉积具有高硬度的含氧化物纳米多层膜。在VN/SiO_2和VN/AlON纳米多层膜中,由于NaCl结构VN层晶体结构的模板效应,通常溅射态为非晶的SiO_2或AlON层在其厚度小于约1 nm时能够晶化,并与VN层共格外延生长,从而使多层膜的硬度得到明显提高,最高硬度分别达到34GPa和30Gpa;随着自身厚度的进一步增加,SiO_2或AlON层逐渐转变为以非晶态生长,阻断了纳米多层膜的共格外延生长,多层膜的硬度随之降低。而模板层VN的厚度改变对纳米多层膜的生长结构和力学性能影响相对较小。 2.对ZrO_2/TiN纳米多层膜的研究表明,与立方结构的氮化物一样,四方结构的ZrO_2也呈现出影响另一沉积层(TiN)晶体生长的模板效应,在此效应下,通常仅以立方结构存在的TiN在层厚小于1.8nm时被强制改变其晶体结构,形成与ZrO_2相同的亚稳态四方晶体结构,并与ZrO_2共格外延生长。随TiN层厚的增加,ZrO_2晶体层对TiN赝晶生长的模板效应逐渐减弱,TiN又以其稳定的NaCl结构生长,多层膜的共格外延生长结构遭到破坏,形成了四方结构ZrO_2和立方结构TiN交替生长的非共格纳米多层结构。ZrO_2/TiN纳米多层膜没有显示出硬度明显升高的超硬效应,其原因与多层膜中的共格应变使得两调制层材料模量差异的减小有关。 3.在TiAlN/Si_3N_4纳米多层膜中,由于TiAlN层晶体结构的模板作用,溅射态为非晶的Si_3N_4在厚度小于0.6nm时被晶化,并与TiAlN层形成共格外延生长,多层膜产生硬度高达52GPa的超硬效应。随着层厚的增加,Si_3N_4转变为以非晶态生长,多层膜的硬度也随之降低。高温稳定性研究表明,该体系纳米多层膜具有良好的高温结构稳定性,即使在900℃的温度,多层膜仍能保持其晶体结构和调制结构的稳定,其硬度也依然明显高于TiAlN单层膜。但多层膜的抗氧化性并没有相对于TiAlN单层膜得到明显提高。 4.论文的研究发现,两调制层形成共格结构是纳米多层膜获得超硬效应的必要条件。模量差强化是纳米多层膜获得超硬效应的主要机制,但应考虑各调制层模量在共格生长形成的交变应力场作用下的改变。基于这一研究结果,论文对现有高硬度纳米多层膜的设计准则提出了修正和补充: 1)两调制层应形成共格外延生长。 两调制层形成共格界面是纳米多层膜产生超硬效应的必要条件,但多层膜在材料组合上并不仅限于晶格参数相近的两种材料,借助于纳米多层膜晶体生长的模板效应,两种结构类型不同的晶体材料、甚至其中一种为非晶的材料也可形成产生超硬效应所必须的共格界面结构; 2)调制层在形成共格结构后材料的模量差应尽可能大。 共格生长的两调制层存在模量差是纳米多层膜获得超硬效应的主要原因,但是,对于各调制层的模量,应是纳米多层膜形成共格结构后在交变应力场作用下的改变值,而非各调制层以单层膜形式存在时的模量。 以上对设计准则的修正和补充,大大拓展了高硬度纳米多层膜的材料组合空间。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 张欣;张金钰;牛佳佳;雷诗莹;刘刚;孙军;;Cu/Nb纳米多层膜延性及其断裂行为[J];中国有色金属学报;2011年06期
2 龚杰;刘孟寅;王海媛;薛凤英;颜景岳;张帅;王晖;李德军;;工作气压和基底偏压对ZrB_2/AlN纳米多层膜结构和机械性能的影响[J];真空科学与技术学报;2011年04期
3 顾超;朱宏喜;任凤章;王姗姗;肖丽丽;;双槽电沉积法制备Cu/Ag纳米多层膜制备及研究[J];表面技术;2011年04期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前10条
1 胡滢;曹为民;印仁和;曾绍海;王慧娟;;铜钴纳米多层膜的制备,结构及巨磁阻性能的研究[A];2004年全国电子电镀学术研讨会论文集[C];2004年
2 姚素薇;赵瑾;张卫国;;电沉积Cu/Co纳米多层膜及其巨磁电阻效应[A];2002年全国电子电镀年会论文集[C];2002年
3 张金钰;张欣;刘刚;孙军;;Cu/Cr纳米多层膜疲劳行为的尺寸依赖性[A];第十五届全国疲劳与断裂学术会议摘要及论文集[C];2010年
4 赵文济;岳建岭;乌晓燕;李戈扬;;VN/SiO_2纳米多层膜的微结构特征与超硬效应[A];2006年全国电子显微学会议论文集[C];2006年
5 李戈扬;;纳米多层膜的共格外延生长特征与超硬效应[A];2004年中国材料研讨会论文摘要集[C];2004年
6 孔明;李戈扬;;纳米多层膜中的非晶晶化与超硬效应[A];TFC'05全国薄膜技术学术研讨会论文摘要集[C];2005年
7 张惠娟;袁家栋;许辉;赵文济;李戈扬;;纳米多层膜中的交变应力场与超硬效应[A];第十三届全国电子显微学会议论文集[C];2004年
8 刘明霞;徐可为;;纳米多层膜塑性变形及其Hall-Petch表征[A];第六届中国功能材料及其应用学术会议论文集(10)[C];2007年
9 戴嘉维;岳建岭;李戈扬;;TiN/TiB_2纳米多层膜的共格外延生长[A];2005年全国电子显微学会议论文集[C];2005年
10 金上校;曹猛;邓湘云;李德军;;调制周期对ZrB_2/BN纳米多层膜结构和性能的影响[A];2008全国功能材料科技与产业高层论坛论文集[C];2008年
中国博士学位论文全文数据库 前10条
1 孔明;两相纳米结构薄膜中的模板效应与超硬效应[D];上海交通大学;2009年
2 李冠群;VC基纳米多层膜的微结构与超硬效应[D];上海交通大学;2011年
3 朱晓莹;若干金属纳米多层膜界面结构及力学性能研究[D];清华大学;2010年
4 万海波;纳米多层膜高温下微结构的演化[D];上海交通大学;2012年
5 岳建岭;硬质纳米多层膜的微结构与超硬效应[D];上海交通大学;2008年
6 尹德强;超硬金属氮化物纳米多层膜界面微结构及力学性能研究[D];重庆大学;2012年
7 洪春福;含钛非晶碳薄膜的制备、组织结构与性能[D];浙江大学;2010年
8 文懋;NbN、WN_x单层膜以及NbN基多层膜的微观结构和力学性能研究[D];吉林大学;2010年
9 李晓东;超磁致伸缩纳米多层膜制备及其性能研究[D];华东师范大学;2008年
10 张治国;磁控溅射纳米多层膜替代电镀铬涂层的研究[D];大连理工大学;2009年
中国硕士学位论文全文数据库 前10条
1 刘广庆;磁控溅射技术设计合成ReB_2/TaN纳米多层膜的研究[D];天津师范大学;2011年
2 陈德军;TiN/AIN纳米多层膜的制备与性能研究[D];广东工业大学;2007年
3 介星迪;电沉积制备镍铜纳米多层膜的工艺及组织与性能研究[D];昆明理工大学;2010年
4 刘国涛;溅射沉积Cu/Mo纳米多层膜结构与性能研究[D];昆明理工大学;2012年
5 王海媛;W/ZrB_2纳米多层膜界面性质第一性原理的研究[D];天津师范大学;2012年
6 付延争;Ti/TiN、TiN/CrN和TiN(NbN)/SiNx纳米多层膜界面第一原理研究[D];吉林大学;2008年
7 李广泽;TiN/zrN纳米多层膜的微结构与力学性能[D];上海交通大学;2010年
8 曹猛;离子束辅助沉积ZrN/TiAlN和CN_x/TiAlN纳米多层膜的研究[D];天津师范大学;2008年
9 张金林;磁控溅射金属增韧的TiN/AIN纳米多层膜制备与性能研究[D];沈阳大学;2012年
10 朱朋建;Cr-Al-N、Cr-Mo-N复合膜及CrN/Mo_2N纳米多层膜的制备与性能研究[D];江苏科技大学;2011年
中国重要报纸全文数据库 前2条
1 ;“纳米”浅识[N];山西日报;2000年
2 王著宇;纳米药学——二十一世纪崭新的前沿科学[N];中国医药报;2001年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978