收藏本站
《上海交通大学》 2008年
收藏 | 手机打开
二维码
手机客户端打开本文

硅基梯形微通道内水蒸汽凝结换热特性及等温同向喷射流研究

全晓军  
【摘要】: 随着各种热力系统尺寸日益减小的趋势,微通道越来越广泛的应用于微换热器以及微型燃料电池等器件中。微通道内的流动凝结机理研究,对于这些高新技术产业具有重要的应用前景和学术价值。对微通道流动凝结换热的传热机理和特性认识尚处于起步阶段,有限的研究表明,微通道内流动凝结的主要流型是弥散流、环状流、喷射流和塞/泡状流。表面张力取代重力在微通道中起到主要作用,常规通道中因重力作用而导致的分层流不再出现。几何形状、表面粗糙度以及润湿性等表面特性,在微通道流动冷凝中显得尤为突出。常规通道与微通道在重力、表面张力和剪切力的相对量级上有重大差异,导致微通道内的两相流机理和流型转变与传统管道有很大不同;未考虑表面张力的常规尺度冷凝模型已不能完整描述微通道内的流动凝结过程。而将大直径圆管的结论外推到小直径非圆形管道,会造成压降和换热系数预测的极大误差。 本文以揭示微通道内流动凝结换热的机理为目标,以流型、压降和换热特性为研究重点,对微通道内蒸汽流动凝结特性进行实验研究和理论分析。本论文首先利用高速CCD可视化成像系统,对微通道内水蒸汽凝结相变过程的流型和喷射流出现频率进行可视化实验。研究结果表明:微通道内存在bubbling和jetting两种形式的凝结喷射流模式。随着水蒸汽的质量流量增大,以及微通道横截面宽高比、冷凝速率和微通道水力直径的减小,凝结喷射流的发生频率会增大;喷射流发生位置作为微通道内环状流和塞状流区域的分界点,随着质量流量增大或冷凝速率减小而向微通道的下游移动,发生点的蒸汽干度也减小。意味着微通道内的环状流区域增大,塞状流区域减小;反之则情形相反。 其次,对去离子水在不同横截面宽高比光滑梯形硅微通道中的层流压降进行实验研究和数值模拟,将实验结果与文献中的单相流压降关联式以及理论解进行对比;而后对水蒸气凝结相变压降进行了测量,发现凝结压降随着微通道水力直径的减小、质量流量和干度的增大而增大;Chisholm常数C随着微通道水力直径的减小而减小;现有的小通道和常规通道的压降关联式往往高估了本文的实验数据;基于无量纲分析方法,合理选择了Chisholm常数C的控制参数,通过大量的实验数据,修正了Lockhart-Martinelli的两相流压降模型,给出了Chisholm常数C的新实验关联式。 基于MEMS加工技术,在两根具有相同横截面宽高比的微通道内制作集成Pt热电阻直接测量微通道内壁面温度,有效减小了水蒸气凝结换热系数的实验误差。实验结果表明:凝结换热系数随着微通道的水力直径减小、质量流量和干度的增大而增大;基于湍流边界层分析建立了剪切力驱动的环状流凝结换热半理论模型,该模型与本文实验结果吻合较好;理论分析了因为常规通道压降实验关联式高估了微通道的凝结压降数据,导致了其相应的换热系数关联式必然高估微通道换热系数的原因。这个结论可以用来检验微通道的凝结摩擦压降和换热系数实验结果的一致性和正确性。 最后为了深入地研究微通道内的凝结喷射流现象,借助高速CCD对无相变微气泡在梯形截面硅微通道中的产生进行可视化实验研究。分析了梯形横截面几何形状,水和空气流量对气泡喷射频率的影响特性以及两相流型的转变曲线及区域划分。发现了bubbling及jetting两种不同的均匀气泡形成模式,针对不同的模式根据实验结果得到了各自的气泡频率和长度的拟合公式。观察气泡在下游T型通道处的分离行为,发现了断裂(breaking)及不断裂(non-breaking)两种气泡分离模式,得到了两种模式的区域划分,且与理论吻合理想。 本文的研究不仅有利于提高对微通道内蒸汽凝结换热特性及机理的理解,还有助于微冷凝器的开发以及优化设计。
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2008
【分类号】:TK124

【相似文献】
中国期刊全文数据库 前10条
1 张伟;徐进良;;复杂结构微流体芯片中的瞬态流型研究[J];工程热物理学报;2007年02期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
中国博士学位论文全文数据库 前2条
1 全晓军;硅基梯形微通道内水蒸汽凝结换热特性及等温同向喷射流研究[D];上海交通大学;2008年
2 甘云华;硅基微通道内流动与传热的可视化测量及其规律的研究[D];中国科学技术大学;2006年
中国硕士学位论文全文数据库 前1条
1 魏珍;混合工质在硅微通道内的流动与换热特性[D];上海交通大学;2008年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026