收藏本站
《南京航空航天大学》 2009年
收藏 | 手机打开
二维码
手机客户端打开本文

支持向量回归机及其在智能航空发动机参数估计中的应用

赵永平  
【摘要】: 智能发动机控制作为航空发动机最值得发展的先进控制概念,它包括的内容非常丰富。因而,本文重点研究了智能发动机控制中的推力估计器设计和解析余度技术。推力估计器在智能发动机控制中的直接推力控制和性能退化缓解控制中都有重要应用;智能发动机控制中的高可靠性控制就是针对传感器故障而提出的,而要保证传感器工作的可靠性,发展先进的解析余度技术是一种有效的途径。在设计推力估计器和发展解析余度技术的过程当中,作者利用了机器学习中具有统计学基础和优良泛化能力的支持向量回归技术,并针对原有算法的一些缺点和不足之处提出了许多有价值的算法和观点,更重要的是,作者将自己提出的算法应用到了推力估计器设计和解析余度技术当中并取得了满意的效果。本文的主要研究内容如下: 首先针对经典支持向量回归机不能抑制系统中存在的奇异点问题提出了截尾ε-不敏感损失函数,并进而提出了截尾支持向量回归机。截尾支持向量回归机不仅能抑制系统中存在的奇异点而提高回归机的泛化能力,还减少了支持向量的数目,提高了实时性。由于截尾支持向量回归机涉及到非凸优化问题,因而作者利用CCCP技巧,将非凸优化问题转化为一系列凸优化问题,才使这个非凸优化问题得以解决。作者在实现截尾支持向量回归机的过程当中从两个角度出发:一是对偶空间;二是原空间。虽然角度不同,但达到的效果基本相同。 在分析了硬支持向量回归机产生过拟合现象的原因后,作者提出了利用Greedy Stagewise策略来近似训练硬支持向量回归机,即GS-HSVR算法。这主要是由于Greedy Stagewise策略产生的“早停”现象阻止了硬支持向量回归机过拟合现象的发生,这其实相当于一种正则化策略。和经典的软支持向量回归机比较起来,笔者提出的近似训练算法在泛化能力上和软支持向量回归机相当,但在训练时间和支持向量数目上都有一定的优势。 和经典支持向量回归机比较起来,最小二乘支持向量回归机虽然能减轻训练代价,但其解缺乏稀疏性。为了实现其解的稀疏性,作者在介绍FSA-LSSVR算法的基础上,首先提出了LS2SVR算法。这种算法和FSA-LSSVR算法以及一些现存的算法比较起来,无论在训练时间和支持向量数目上都占有一定的优势。和FSA-LSSVR算法比较起来,LS2SVR考虑到了整个训练样本集产生的约束对目标函数的影响,因而在较少支持向量数目的情况下,能取得和FSA-LSSVR一样的泛化能力,并进行了证明。为了进一步实现LSSVR的稀疏性,作者将约简技术和迭代策略结合起来提出了RR-LSSVR算法。与FSA-LSSVR、RLSSVR和LS2SVR相比较,RR-LSSVR算法有更优秀的稀疏性,但这种算法的训练代价也是最大的。 为了改善局部变化差异比较大的系统的学习效果,同时也为了利用先验知识和多核学习的优势,作者将半参数技术和多核学习结合起来,提出了两种多核半参数支持向量回归机:一种是多核半参数线性规划支持向量回归机(MSLP-SVR),另一种是稀疏多核半参数最小二乘支持向量回归机(稀疏MSLSSVR)。这两种多核半参数回归机有一个特性,那就是经典的单核回归机是其特例,这也就意味着多核半参数回归机的学习效果不会比经典的单核回归机差。另外,和其他多核学习算法比较起来,作者提出的多核学习算法在泛化能力或者训练时间上占有优势。 作者研究和提出这些算法的目的就是为了应用它们。这主要包括两个方面:一是利用RR-LSSVR算法进行推力估计器设计;二是基于GS-HSVR算法提出了一种在线进行传感器故障诊断的解析余度技术。 实现直接推力控制和性能退化缓解控制的一个重要环节就是进行推力估计器设计。首先作者基于用于模型选择的留一法来进行推力估计器输入量的选择。在确定完推力估计器的输入量后,用RR-LSSVR算法进行了全包线推力估计器的设计。为了在全包线内设计高精度和高实时性的推力估计器,作者将包线按高度进行分块。紧接着,提出了更合理的对全包线进行分块的方法,那就是将全包线内的点进行聚类。一般来说,每一类中的数据点都是相似的,推力不会相差太大,这就避免了在推力绝对误差基本相同的情况,由于推力相差太多而导致相对误差较大现象的发生。针对航空发动机在服役过程中发生的性能退化现象,在训练过程中加入退化样本后使这个问题得以解决。为了实时地估计出航空发动机运行时的推力值,作者修改了RR-LSSVR算法,在输入端引入反馈的推力值来模拟航空发动机的动态过程而设计了动态过程推力估计器。 在智能发动机控制概念中有一种高可靠性控制。所谓高可靠性控制,就是要保证提供给控制器的信号是正确可靠的。针对这个问题,作者将离线GS-HSVR算法进行了适当的改进。改进后的算法即FOAHSVR算法不仅能获得和GS-HSVR相当的泛化能力,更重要的是FOAHSVR是一种在线学习算法。利用FOAHSVR的在线学习性,提出了一种在线进行航空发动机传感器故障诊断的方案,并能对航空发动机的单传感器或者多传感器的偏置故障进行很好的检测、隔离和自适应重构而形成了解析余度技术。为了应对传感器的漂移故障,作者还提出了一种修正策略,实验表明,此修正策略能对航空发动机传感器发生的漂移故障进行有效的检测和自适应重构。
【学位授予单位】:南京航空航天大学
【学位级别】:博士
【学位授予年份】:2009
【分类号】:V233.7

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 陈盼;陈皓勇;叶荣;陈天恩;李丹;;基于小波包和支持向量回归的风速预测[J];电网技术;2011年05期
2 胡金海,谢寿生,骆广琦,尉询楷,胡剑锋;基于支持向量机方法的发动机性能趋势预测[J];推进技术;2005年03期
3 邓军生;孔繁钰;陈小峰;;基于SVR的轨道交通客流量预测[J];重庆科技学院学报(自然科学版);2008年03期
4 张爱华;于忠党;;基于支持向量回归的放大器性能评价研究[J];仪器仪表学报;2008年03期
5 李大海;李天石;李宗斌;;一种多率采样的在线支持向量回归及应用[J];西安交通大学学报;2010年03期
6 李大海;李天石;;非均匀采样系统的支持向量回归建模与控制[J];西安交通大学学报;2011年03期
7 张培艳;吕恬生;宋立博;;基于案例学习的排球机器人运动规划及其支持向量回归实现[J];上海交通大学学报;2006年03期
8 孙晋众;林健;;基于小波的能源消费弹性系数预测方法[J];沈阳航空工业学院学报;2007年03期
9 王玲;穆志纯;郭辉;;一种基于聚类的支持向量机增量学习算法[J];北京科技大学学报;2007年08期
10 刘扬;王浩;方宝富;姚宏亮;;一种基于支持向量回归方法在RoboCup中的应用[J];合肥工业大学学报(自然科学版);2007年10期
中国重要会议论文全文数据库 前10条
1 赵勇;孙卫卫;张娜;;自动气象站地温传感器故障的判断方法[A];第七届全国优秀青年气象科技工作者学术研讨会论文集[C];2010年
2 彭姝迪;林静玉;周渠;李孟励;;加权支持向量回归机在传感阵列模式识别中的应用[A];重庆市电机工程学会2010年学术会议论文集[C];2010年
3 陈懿冰;张玲玲;石勇;;基于改进的支持向量回归机的金融时序预测[A];第六届(2011)中国管理学年会论文摘要集[C];2011年
4 邓小英;杨顶辉;关昕;;基于支持向量回归的随机噪声消减和零漂去除[A];中国地球物理·2009[C];2009年
5 郭志明;赵春江;陈立平;黄文倩;;基于GA-LSSVR的烟草尼古丁含量的近红外光谱分析[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
6 吴德会;;非线性动态系统的SVR辨识法[A];第二十六届中国控制会议论文集[C];2007年
7 尹焕平;孙宗海;;基于自然梯度的支持向量回归在线算法[A];2009中国控制与决策会议论文集(3)[C];2009年
8 林关成;李亚安;李国辉;;支持向量回归的连续过松弛训练算法研究[A];2010’中国西部声学学术交流会论文集[C];2010年
9 王玲;穆志纯;郭辉;;基于支持向量回归的增量建模方法[A];第25届中国控制会议论文集(上册)[C];2006年
10 张柯;李文然;;一种新的传感器故障诊断设计方法[A];2007中国控制与决策学术年会论文集[C];2007年
中国重要报纸全文数据库 前10条
1 曾星记者 夏文俊;法拉利玛莎拉蒂汽车公司召回部分进口法拉利轿车[N];中国质量报;2008年
2 夏文俊记者 曾星;法拉利玛莎拉蒂汽车公司召回问题汽车[N];中国国门时报;2008年
3 记者 徐博;法拉利召回部分轿车[N];经济参考报;2008年
4 湖北 李跃辉;伊尼威利981型温度控制器原理及应用[N];电子报;2006年
5 河北 常宏进;数码相机故障诊断五步走[N];电子报;2008年
6 吴惠民;北京环卫集团注重减排增效[N];中国建设报;2010年
7 皇明太阳能集团董事长 黄鸣;把轿车安在楼顶 电脑装进浴室里[N];经理日报;2008年
8 胡荣山 马巍;上海海大一课题列入国家“863”计划[N];中国船舶报;2007年
9 陈竹 袁悦尔 周凯;“绝顶雄风”熊在半空吓坏廿五游客[N];华东旅游报;2011年
10 中国邮政集团公司网路运行部 徐希魁;通过观查发动机排气变化诊断故障[N];中国邮政报;2007年
中国博士学位论文全文数据库 前10条
1 赵永平;支持向量回归机及其在智能航空发动机参数估计中的应用[D];南京航空航天大学;2009年
2 谭显胜;支持向量回归解释性体系的建立及应用[D];湖南农业大学;2010年
3 余艳芳;改进型支持向量回归机及其在过程建模与控制中的应用[D];华东理工大学;2010年
4 周金柱;电子装备结构因素对电性能影响的支持向量建模与补偿[D];西安电子科技大学;2011年
5 蒋辉;经济预测的灰色支持向量回归方法[D];中南大学;2010年
6 裴军芳;基于QPSO优化的聚合物玻璃化转变温度的支持向量回归研究[D];重庆大学;2012年
7 袁从贵;最小二乘支持向量回归及其在水质预测中的应用研究[D];广东工业大学;2012年
8 孙少超;数据校正和支持向量机的过失误差识别的研究[D];华东理工大学;2012年
9 向国齐;支持向量回归机代理模型设计优化及应用研究[D];电子科技大学;2010年
10 刘广利;基于支持向量机的经济预警方法研究[D];中国农业大学;2003年
中国硕士学位论文全文数据库 前10条
1 苗强;农民收入的粗糙支持向量回归与实证分析[D];安徽大学;2010年
2 阿磊;基于支持向量回归机的汇率预测[D];华东师范大学;2011年
3 王(山弄);支持向量回归在曲线拟合/重构中的应用[D];中国农业大学;2005年
4 陈金翠;最小二乘支持向量回归组合预测模型的应用[D];新疆大学;2010年
5 杨芳;基于支持向量回归(SVR)的材料热加工过程建模[D];上海交通大学;2010年
6 刘菊艳;基于数据挖掘技术的短期风速预测[D];西安科技大学;2010年
7 王刚;支持向量回归机在药品销售预测中的分析及应用[D];云南财经大学;2010年
8 陈超;基于支持向量回归的集成价格预测方法研究[D];吉林大学;2011年
9 李鹏超;基于模拟退火算法和支持向量回归的网格资源预测[D];吉林大学;2010年
10 胡国圣;基于遗传算法和支持向量回归的网格资源预测[D];吉林大学;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026