星际软着陆动力下降与障碍规避制导方法研究
【摘要】:动力下降与着陆避障制导是星际软着陆任务的关键技术之一,直接决定着整个任务的成败。除了燃耗最优的性能要求以外,未来的月球和火星着陆任务需要探测器具备全天候在事先近乎未知的复杂地形实施自主安全着陆的能力。因此,亟需在“嫦娥3号”月球着陆制导方案的基础上进行能力拓展,以兼顾对不同光照条件甚至低能见度的适应能力。本学位论文从软着陆制导方案、障碍检测与最佳着陆点选择、制导算法性能对比与误差分析三个方面出发,对动力下降与障碍规避制导方法进行了研究。首先,以“嫦娥3号”着陆制导为典型方案进行了详细描述与分析,针对其不足并结合正在发展的三维成像闪光雷达提出了相应的改进方案,并基于月球环境模型分别建立了探测器在动力下降与避障着陆各阶段的动力学模型。然后,为理清典型方案中控制模式的基本思想和制导算法的主要特点,对其各阶段所采用的制导算法和障碍检测与安全着陆点选择算法进行了总结与仿真分析,所得仿真结果与“嫦娥3号”的实际飞行结果基本一致。接着,采用高斯伪谱法分别设计了动力下降燃耗最省的标称轨迹和闭环最优制导律,以及基于改进的障碍检测与着陆点选择策略的燃耗最优避障着陆制导律,并通过数学仿真验证了改进方案的有效性和着陆避障能力的优越性。最后,对上述两种方案的制导律性能以及模型误差对制导精度的影响进行了定量地对比分析,并利用蒙特卡洛和线性协方差分析方法分析了初始误差的传播规律,结果表明在相同条件下改进方案的制导律在燃耗和制导精度上都优于典型方案,且随机初始误差的影响程度会在制导过程中得到有效抑制。