基于深度特征的腹部CT影像肝脏占位性病变辅助诊断研究
【摘要】:在临床诊断中,活组织切片检查(活检)是肝脏占位性病变确诊的最有效的检查方法,然而活检作为一种侵入性检查,难免会给患者带来身体和身心上的伤害,同时易产生并发症。医学成像技术的快速发展为肝脏占位性病变的鉴别提供了新的手段,医生可以从影像中观察病变的征象,并进行分析和诊断。目前用于肝脏占位性病变检查的医学影像技术十分依赖操作者的经验与技术,而且往往还存在主观性强、重复性低、劳动强度大、效率低下等缺点,因此肝脏占位性病变自动辅助检测理论与技术在临床应用中有着极其重要的理论与现实意义。本文在总结国内外研究成果的基础上,以肝脏CT影像为主要研究对象,利用卷积神经网络对低质量腹部影像增强重建、肝脏区域检测、肝脏分割、病变区域检测与病变类型诊断等关键技术进行研究,阐明深度学习算法的多层网络机制和数学模型,揭示医学影像内部本质特征,最终提升肝脏占位性病变自动辅助诊断精度。本文的主要工作总结如下:(1)低质量的CT影像将严重影响目标检测、分割、特征提取、病灶识别等后续影像分析应用。CT扫描能够获取患者体内解剖结构,广泛地应用于临床检查与疾病诊断,但CT影像的重建质量与曝光时间或成像速度密切相关。如何改善CT数据的重建质量已经成为CT成像领域的主要课题。现有基于深度网络的图像增强算法直接学习退化图像与清晰图像之间的映射函数,忽略了观测模型保真项的约束。为此,本文提出了一种改进的深度残差网络CT影像增强算法。该算法将残差网络嵌入到图像增强任务中,通过多个残差增强模块和反投影模块交替优化,实现数据一致性,其中残差增强模块采用将低层次特征和高层次特征聚合连接形成新的特征,并采用联合损失函数来优化训练,提高深度模型的泛化能力。本文提出的CT影像增强算法不仅可以利用深度网络学习高层次特征,还可以利用观测模型的保真先验实现图像增强。在仿真测试数据与真实数据上的实验结果表明,本文提出的算法不仅达到了很好的增强效果,同时也较好地保留了低质量CT图像的细节信息,能够增强后续肝脏定位、分割、病灶识别与疾病诊断的精度。(2)由于腹部CT影像中存在大量的脏器,且灰度相似,直接分割可能会引入大量的虚警,增加后续处理的复杂度。如果从影像序列中直接检测肝脏区域,缩小感兴趣区域的范围,可以增强后续分割与识别的精度。然而,现有的目标检测算法很难适应对比度低、背景复杂以及多视角变化的腹部CT影像,因此准确地检测与定位出肝脏区域仍然是一个具有挑战性的问题。为了提升肝脏检测与定位的精度,本文提出了一种基于边缘感知的改进深度网络肝脏影像检测算法。该算法通过边缘感知融合模块有效地保留肝脏的清晰边界,并利用多尺度稠密金字塔监督模块捕获腹部影像丰富的全局上下文信息。大量定性定量的实验结果表明,本文提出的肝脏检测算法可以有效地提高现有肝脏检测与定位的精度,缩小感兴趣区域的范围,增强后续分割与识别的精度。(3)由于肝脏区域的医学影像边界不明显,内部纹理差异较大,无论是以图割、能量泛函等为代表的传统影像分割方法,还是以深度学习为代表的机器学习模型都不能实现肝脏区域的准确分割。这主要是由于基于人工特征的传统模型虽然可解释能力强,在简单场景下具有鲁棒的表征效果,但在复杂背景应用中存在普适性差的问题;而现有的深度学习方法虽然可以通过大数据学习提取目标的特征,但其可解释性差,无法对提取到的特征进行量化评估。因此,在深度网络肝脏检测算法的检测结果基础上,本文提出了一种基于多层次深度特征融合的两阶段肝脏区域分割算法。该算法首先采用改进的SCNN度量网络从标准腹部影像数据集中找出最相似的基准模板;然后采用SIFT-Flow变换进行密集匹配,获得待分割肝脏粗分割结果;最后在粗分割语义标签基础上利用多层次特征融合实现肝脏区域精分割。定性和定量的实验结果表明,本文提出的肝脏分割准确性大大提高,能够增强后续病变区域语义分割与诊断的精度。(4)大多数肿瘤位于肝脏内部,只有分割出病灶区域,才能实现肝脏疾病的诊断。现有的语义分割模型对弱小目标分割能力较差,且分割结果存在空间不一致现象。因此,为了实现占位性病灶的精确检测与分割,本文提出了一种基于互学习的有监督生成对抗语义的肝脏病变区域分割架构模型。首先,前向训练中将生成器的语义映射与语义分割分开进行训练,且在后向训练中利用语义结果边缘约束获得更加精确的病灶区域;然后,采用生成网络、分割网络与对抗网络的损失项构建加权损失函数,提升各子模块的耦合程度,增强模型的泛化能力与训练精度;最后,利用基于小波核空间的LSSVM向量机分类器实现占位性病变检测。大量定性定量实验结果表明,本文提出的分割架构模型可以稳定地提高语义分割模型的性能,提升肿瘤类型诊断的精度。本论文有图44幅,表13个,参考文献171篇。