基于迁移学习的脑机融合系统的研究
【摘要】:磨机融合(Brain Machine Integration ),是指通过脑机接口技术,融合生物智能和机器智能的混合智能系统,被认为是二十一世纪最重要的前沿科技领域之一。近年来,随着脑科学和人工智能的发展,脑机融合可以将生物智能(脑)与机器智能(机),通过脑机接口技术进行有机地融合和深度地协作,进而形成比单一生物智能或者单一机器智能,更加强大的混合智能新形态。同时,随着脑机融合的发展和进步,又可以促进脑科学、人工智能、认知科学与临床医学等领域的理论创新和应用突破,在神经康复与动物机器人领域有着重要的研究意义。作为脑机融合的重要组成部分,机器智能具有强大的存储和运算能力;与机器智能相比,生物智能的优势在于其高效低功耗的感认知和逻辑推理能力。如何将二者的优势有机地融合在一些,建立更强大的新型智能形态,是脑机融合面临的关键问题和挑战。针对这一关键问题和挑战,本文进行了基于迁移学习的脑机融合系统的研究:迁移学习,可以将从不同但相关的领域或者不同但相关的任务中学习到的知识进行迁移和融合;脑机接口,可以在生物大脑与外围设备之间建立直接的连接通路;因此,基于迁移学习和脑机接口的脑机融合系统,可以将不同生物、不同领域、不同任务之间的信息进行交流、知识进行迁移、智能进行融合。概括来说,本文从以下三个方面逐层深入地进行了探讨。首先,本文提出基于迁移学习的脑机融合系统的概念和体系结构,总体思路为:首先,模仿生物的学习过程,使机器具有能够在不同但相似的领域中,解决不同但相关的问题的能力,这对于神经调控、残障康复等缺乏足够多高质量训练数据的领域具有重要的意义;其次,通过脑机融合系统,将学到的知识在生物与生物、生物与机器、机器与机器之间进行迁移和融合,增强系统智能决策的能力,实现大脑-机器-机器-大脑之间深度协作的智能增强系统;此外,通过脑机融合中计算理论与方法的创新,可以为生物大脑运行机制的探索提供新的思路和方法,促进脑科学、认知科学和临床医学的进步。然后,基于本文提出的脑机融合系统的体系结构,针对动物机器人这一重要研究对象,借助浙江大学的大鼠机器人平台,本文设计了基于迁移强化学习的大鼠机器人脑机融合系统。首先,将大鼠机器人迷宫导航问题,抽象为经典的强化学习模型;然后,根据源智能体和目标智能体是否相同、源迷宫和目标迷宫是否相同、源任务和目标任务是否相同,设计了基于层次化的迁移强化学习算法、基于策略复用的迁移强化学习算法、基于值函数复用的迁移强化学习算法和基于规则复用的迁移强化学习算法;接着,基于迁移强化学习算法,从迁移什么、如何迁移、何时迁移三个方面,详细地描述了大鼠机器人脑机融合系统的设计与实现;并从行为实验的角度,证明了基于迁移强化学习的大鼠机器人系统的智能增强性;最后,本文从计算神经建模的角度,解释了此脑机融合系统智能增强的神经机理。最后,本文进一步将基于迁移学习的脑机融合系统的研究,从以动物为对象的实验室研究,拓展到以人类为对象的临床医学的研究。借助哈佛大学的临床诊断和康复平台,本文设计了基于迁移极限学习机的意识诊断和调控脑机融合系统。首先,将大脑意识诊断和调控的问题,抽象为基于皮层脑电的清醒预测和药物控制模型;然后,针对临床医学中高质量数据不足的问题,本文设计了基于特征和参数的迁移极限学习机算法;接着,基于迁移极限学习机算法,本文设计了意识诊断和调控的脑机融合系统;并从临床实验的角度,评估了基于迁移极限学习机的人脑意识诊断和调控系统的有效性;最后,基于此迁移脑机融合系统,本文发现了人脑意识清醒与α震荡具有相关性,并对此神经机理进行了探讨。综上所述,从基于迁移强化学习的大鼠机器人脑机融合系统的研究,到基于迁移极限学习机的人脑意识诊断和调控脑机融合系统的研究,本文逐渐深入地论证了基于迁移学习的脑机融合系统的可行性和有效性;并且,从计算神经建模的角度,解释了基于迁移学习的脑机融合系统智能增强的神经机理;此外,基于设计的脑机融合系统和实验结果,探讨了大脑意识改变的神经机理。本研究为脑机融合系统,在动物机器人和神经康复领域中的发展和应用,提供一种新的思路和方法。
|
|
|
|
1 |
毕一帆;尹东;李绍滋;王宪辉;;一种基于模糊判定的融合系统有效性评估方法[J];厦门大学学报(自然科学版);2009年04期 |
2 |
;某些因素对大鼠胃肌电的影响[J];基础医学与临床;2001年S1期 |
3 |
陶家祥;大鼠基因组成功破译的重大科学价值[J];世界科学;2004年05期 |
4 |
陈伟强;赵善广;;自制注射用大鼠固定装置[J];上海实验动物科学;1992年04期 |
5 |
杨明智,陈积圣;一种大鼠抓取与固定的新工具介绍[J];上海实验动物科学;2001年03期 |
6 |
孙同柱,付小兵,翁立新,梁雪梅,陈伟;介绍一种简易的大鼠保定方法[J];上海实验动物科学;2004年01期 |
7 |
郭志儒;大鼠基因组序列发表[J];中国兽医学报;2004年03期 |
8 |
冯雪建;卢占军;高登慧;;大鼠灌胃给药方法的研究[J];实验动物科学与管理;2006年04期 |
9 |
肖首柏;胡剑锋;;脑机接口研究概述[J];科技广场;2007年09期 |
10 |
郎怡然;杜平;申亨澈;;大鼠非运动脑区控制基于编码的脑-机互联系统[J];中国科学:生命科学;2011年07期 |
11 |
张春笋;;香烟白酒浸出液对Wistar大鼠身体健康影响的探究[J];生物学通报;2011年08期 |
12 |
奇云;李大可;;脑机接口——2012年生命科学研究的六大突破之一[J];生命世界;2013年05期 |
13 |
罗丽华,陈宜峰,单祥年,曹筱梅;大鼠(Rattus norvegicus)微量血培养和染色体标本制作的方法[J];动物学研究;1980年03期 |
14 |
山内忠平;王葆茹;;小鼠,大鼠饲育室环境温度条件的实验性探讨[J];上海畜牧兽医通讯;1982年01期 |
15 |
鲍世民;金玫蕾;张瑞忠;徐科;;同工酶电泳法监测实验大鼠遗传质量的探讨[J];上海实验动物科学;1986年04期 |
16 |
丁正梁;邹惠莉;舒家模;;SD大鼠临床生物化学正常值测定[J];上海实验动物科学;1986年03期 |
17 |
F.K.Khosho;;一种简单有效的采集大鼠尿样的方法[J];上海实验动物科学;1987年02期 |
18 |
韩力;朱清华;;不同月龄正常大鼠的心电图比较[J];上海实验动物科学;1988年04期 |
19 |
冉新泽;阎永堂;魏书庆;罗成基;曾杰莉;;Wistar大鼠临床血液学的部分生理数据和形态学特点[J];北京实验动物科学;1990年04期 |
20 |
王荫槐,王玉琢,孙淑华,王安京;无菌大鼠的人工培育及其生物学特性的研究[J];中国实验动物学杂志;1991年02期 |
|