化工过程中的若干预测控制算法与应用研究
【摘要】:
随着全球化市场的竞争日趋激烈、不可再生资源的日益减少和环境压力的不断加大,如今的生产企业对过程控制的性能和效益提出了更高的要求。预测控制技术以其对模型质量要求不高、控制性能好、易于处理约束和经济效益可观等特点,越来越受到工业控制界的关注。本文在前人基础上,从实际出发,对预测控制的若干问题进行了较为深入的研究,包括:
(1)针对DMC算法对扰动估计能力弱的缺点,提出了一种扰动自适应DMC算法。采用时间序列(ARMA)模型描述不可测扰动的动态特性。考虑到扰动往往具有时变性,采用递推算法在线辨识ARMA模型,并对扰动的未来行为作出预估,提高了系统的模型预测精度,改善了DMC抑制扰动的能力。
(2)提出一种基于多次迭代思想的递推伪线性回归(MIPLR)算法。递推辨识ARMA(X)模型,算法的准则函数不是参数向量的二次函数形式,所以相应的解析解不存在,传统的在线递推算法辨识精度不理想。MIPLR采用多次迭代思想,在每一次递推过程中通过多次迭代使结果更加逼近准则函数极小点。与原伪线性回归算法相比,在辨识ARMA(X)模型上MIPLR具有更好的辨识效果。
(3)将扰动自适应的思想扩展到状态空间框架下的预测控制中,克服了基于输入-输出模型的DMC算法的不足。同时,考虑到数据与辨识模型的不确定性,改用Min-Max形式描述MPC算法的控制作用优化命题,并将在线辨识过程中的误差数据引入Min-Max命题,使在线辨识与控制作用鲁棒优化求解紧密结合起来,提高了算法的鲁棒性。进一步地,将此Min-Max问题转换为一个等效的非线性Min问题,并采用多步线性化方法实现快速求解,解决了传统Min-Max方法在线计算负荷高的问题。
(4)将经典控制理论中的反馈机制和闭环控制系统的概念引入粒子群算法,提出了一种闭环粒子群(CLPSO)算法。在CLPSO中,将每个粒子视作一个被控对象,对其构建一个闭环控制系统。迭代过程中将粒子的适应值作为被控变量,反馈给闭环回路,通过PID控制器调整更新惯性权重,然后再进行粒子的速度和位置的更新。CLPSO很好的满足了每个粒子的自身需求,极大的保证了种群中粒子的多样性,提高了PSO的搜索能力。
(5)考虑到模型不确定性,用Min-Max优化命题描述工业多变量PID控制器和预测控制器参数整定问题,并给出了面向工程应用的性能指标。利用CLPSO求解该命题。仿真结果显示,所提方法具有良好的控制效果和鲁棒性。并且,运用该方法对化工厂PTA装置控制回路进行优化整定,得到了满意的控制效果。现场应用进一步证明了该方法的有效性。
最后对全文进行了总结,并指出若干有待于今后进一步研究的内容。
|
|
|
|
1 |
王峰;佟绍成;;旋转型行波超声电机的模糊预测控制[J];辽宁工学院学报;2007年02期 |
2 |
金元郁;;一种新型的自适应广义预测控制[J];自动化学报;1992年03期 |
3 |
周云钟;预测控制──第四讲 广义预测控制[J];自动化与仪器仪表;1995年06期 |
4 |
孙浩;车载VLBI天线精确定位预测控制系统[J];上海交通大学学报;1996年04期 |
5 |
印建平,高峰;基于最优控制的新型非线性预测仿真研究[J];现代制造工程;2004年01期 |
6 |
徐祖华,赵均,钱积新;基于Min-Max的预测控制鲁棒参数设计[J];化工学报;2004年04期 |
7 |
史恩秀,黄玉美,史文浩;轮式移动机器人轨迹跟踪的预测控制[J];机械科学与技术;2004年10期 |
8 |
潘晨;肖健梅;;基于SVM的船舶动力定位系统预测控制[J];仪器仪表用户;2010年06期 |
9 |
张厚杼;;氨合成塔温度的最佳预测控制[J];化工自动化及仪表;1988年01期 |
10 |
王永骥,徐桂英,涂健;水轮发电机组l~∞范数性能指标预测控制[J];控制理论与应用;1991年04期 |
11 |
吕剑虹,陈来九;一种多变量连续时间预测控制方法[J];自动化学报;1995年02期 |
12 |
毛志忠;一种全局稳定的直接预测自适应控制器[J];信息与控制;1995年02期 |
13 |
吴国华,席裕庚,张钟俊;基于阶梯化脉冲响应模型的鲁棒预测控制器[J];上海交通大学学报;1996年02期 |
14 |
彭辉,桂卫华;预测控制中逆矩阵的递推求解算法[J];中南工业大学学报(自然科学版);1997年04期 |
15 |
方斌,李仁,季幼章;关于预测控制的鲁棒性[J];安徽大学学报(自然科学版);1998年02期 |
16 |
杨马英,王树青,王骥程;有约束过程的预测控制[J];浙江大学学报(工学版);1999年06期 |
17 |
黄显林,王永富,胡恒章;基于小波神经网络的非线性系统预测控制研究[J];自动化技术与应用;1999年05期 |
18 |
冯少辉,周立芳,钱积新;过阻尼过程的预测控制改进算法[J];机床与液压;2002年04期 |
19 |
兰婷,张伟勇;一种具有稳态目标优化的预测控制算法[J];油气田地面工程;2002年03期 |
20 |
程宏亮,张国贤,包海昆;一种基于RTLinux实时操作系统的自适应预测控制的实现方法[J];计算机测量与控制;2003年06期 |
|