收藏本站
《中国科学技术大学》 2015年
收藏 | 手机打开
二维码
手机客户端打开本文

分数阶系统的控制理论研究

梁舒  
【摘要】:分数阶现象在越来越多的科学与工程问题中被发现,标志着人们对客观世界认知的进步,也对控制和改造动态系统以实现更高的目标带来了机遇和挑战。分数阶系统的控制理论是推动分数阶技术不断发展的基础,是在实际问题中作为一种解决方案能够得到认可并取得良好效果的关键,是一门既有重要的工程意义、较广的应用前景又充满困难的新兴基础科学。本文致力于从易到难、由浅入深并富于创造性地对其进行研究,建立和完善以分数阶控制系统为核心的理论体系。首先,研究目前较热门的分数阶系统鲁棒稳定性问题。针对三类直接影响稳定性的不确定因素,给出分数阶系统的鲁棒稳定线性矩阵不等式(LMI)条件,并进一步研究鲁棒镇定控制器设计以及保守性更低的LMI条件。鉴于巩范数是表征系统鲁棒稳定性和扰动抑制能力的重要指标,首次提出运用广义KYP引理研究并得到适合于分数阶系统的界实引理,并进一步给出分数阶系统的H∞控制器设计方法。稳定性理论中著名的劳斯判据十分简单且有效,但仅适合于整数阶系统。本文首次给出适用于线性定常同元次分数阶系统的劳斯型判据。同时,对于劳斯型列表可能出现的两种特殊情况给出便于数值处理的方法。进一步,针对复系数同元分数次多项式关于黎曼面中任意扇形区域的零点分布给出完备的劳斯型判据。此外,对于更为困难的非同元分数次多项式零点分布问题,给出简单的图解判据。鉴于李雅普诺夫方法在控制系统分析与设计中的重要地位,探讨适合于分数阶系统的李雅普诺夫泛函的存在性和它可能具有的形式。首次证明了线性定常分数阶系统的逆李雅普诺夫定理。提出分数阶系统的李雅普诺夫泛函方程,并进一步给出一类满足要求的李雅普诺夫泛函构造方法。进一步,给出表征分数阶控制系统能量的广义线性二次型泛函,提出使其最小化的LQR控制问题。为了解决该最优控制问题,开创性地给出空间积运算数学工具,能够有效分析分数阶系统无穷维状态空间方程。在此基础上,运用贝尔曼动态规划给出分数阶系统的LQR控制律。最后,考虑分数阶系统的数值实现问题,给出有限维近似方法,得到一般分数阶系统近似模型的状态空间方程,同时对初始化问题进行研究。针对真实分数阶系统与分数阶微分方程数学模型之间的差异,给出它们稳定性之间的关系。
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TP13

手机知网App
【参考文献】
中国博士学位论文全文数据库 前4条
1 李旺;分数阶系统辨识与控制器设计研究[D];中国科学技术大学;2010年
2 张洋;太阳帆航天器姿态控制与轨迹优化研究[D];中国科学技术大学;2010年
3 张国庆;柔性多体系统建模与控制[D];中国科学技术大学;2008年
4 詹训慧;分布式压电智能结构的建模与振动控制[D];中国科学技术大学;2007年
【共引文献】
中国博士学位论文全文数据库 前10条
1 朱敏;太阳帆航天器动力学与控制研究[D];中国科学技术大学;2016年
2 梁舒;分数阶系统的控制理论研究[D];中国科学技术大学;2015年
3 霍明英;电动帆航天器动力学、控制及轨迹优化研究[D];哈尔滨工业大学;2015年
4 毛志;分数阶扩散—波动方程和分数阶变分问题的高精度算法[D];湘潭大学;2015年
5 郝岩;基于帝国竞争算法的非概率可靠性分析及优化[D];吉林大学;2014年
6 余伟;永磁同步电动机的分数阶建模研究[D];华南理工大学;2014年
7 丁策;机载光电稳定平台的分数阶控制研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
8 娄军强;基于压电致动器的空间柔性机械臂系统的轨迹跟踪与振动抑制一体化控制研究[D];浙江大学;2013年
9 史晓宁;太阳帆深空探测轨道控制与优化方法研究[D];哈尔滨工业大学;2013年
10 张瑾;大柔性太阳帆航天器姿轨耦合动力学与控制研究[D];清华大学;2013年
【二级参考文献】
中国博士学位论文全文数据库 前2条
1 陈光;密集模态挠性结构的多变量实验辨识及自适应逆控制[D];中国科学技术大学;2006年
2 胡庆雷;挠性航天器姿态机动的主动振动控制[D];哈尔滨工业大学;2006年
【相似文献】
中国期刊全文数据库 前10条
1 赵春娜;薛定宇;;一种分数阶线性系统求解方法[J];东北大学学报(自然科学版);2007年01期
2 赵春娜;张祥德;孙艳蕊;;成比例分数阶系统的仿真研究[J];系统仿真学报;2008年15期
3 周亚非;王中华;;分数阶混沌激光器系统的同步[J];半导体光电;2008年05期
4 朱呈祥;邹云;;分数阶控制研究综述[J];控制与决策;2009年02期
5 左建政;王光义;;一种新的分数阶混沌系统研究[J];现代电子技术;2009年10期
6 汪纪锋;肖河;;分数阶全维状态观测器设计[J];重庆邮电大学学报(自然科学版);2009年06期
7 孙克辉;杨静利;丘水生;;分数阶混沌系统的仿真方法研究[J];系统仿真学报;2011年11期
8 李安平;刘国荣;沈细群;;不同阶分数阶混沌系统的同步与参数辨识[J];计算机工程与应用;2013年04期
9 严璟;韦庆阳;;分数阶混沌系统耦合同步及混沌键控通信设计[J];计算机技术与发展;2013年12期
10 曾庆山,曹广益,朱新坚;分数阶控制系统的仿真方法[J];计算机仿真;2004年12期
中国重要会议论文全文数据库 前10条
1 许勇;王花;刘迪;黄辉;;一类参数扰动下的分数阶混沌系统的滑模控制[A];中国力学大会——2013论文摘要集[C];2013年
2 薛定宇;白鹭;;分数阶系统的仿真方法(英文)[A];系统仿真技术及其应用学术论文集(第15卷)[C];2014年
3 顾葆华;单梁;李军;王执铨;;一种新分数阶混沌系统及其复合快速同步控制[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
4 王晓燕;王东风;韩璞;;一种分数阶系统的粒子群优化辨识方法[A];全国第三届信号和智能信息处理与应用学术交流会专刊[C];2009年
5 刘杰;董鹏真;尚钢;;分数阶非线性系统动力学分析中数值算法可靠性及其诱导的复杂现象[A];中国力学学会学术大会'2009论文摘要集[C];2009年
6 许建强;;参数不确定分数阶统一混沌系统的自适应同步[A];中国自动化学会控制理论专业委员会C卷[C];2011年
7 刘晓君;洪灵;;分数阶Genesio-Tesi系统的混沌及自适应同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
8 王在华;;分数阶系统的实验建模、稳定性分析与数值求解[A];第六届全国动力学与控制青年学者学术研讨会论文摘要集[C];2012年
9 董俊;张广军;姚宏;王相波;王珏;;分数阶Hindmarsh-Rose神经元模型的动力学特性分析[A];第一届全国神经动力学学术会议程序手册 & 论文摘要集[C];2012年
10 张若洵;杨世平;巩敬波;;一个新Lorenz-like系统的分数阶混沌行为及其同步控制[A];中国力学大会——2013论文摘要集[C];2013年
中国博士学位论文全文数据库 前10条
1 岳超;分数阶可积耦合、离散混沌及代数几何解的研究[D];上海大学;2015年
2 梁舒;分数阶系统的控制理论研究[D];中国科学技术大学;2015年
3 毛志;分数阶扩散—波动方程和分数阶变分问题的高精度算法[D];湘潭大学;2015年
4 谢文哲;分数阶微分方程边值问题解的研究[D];湖南师范大学;2015年
5 吴艳萍;分数阶非线性系统同步与非线性电路理论若干问题研究[D];西北农林科技大学;2015年
6 潘祥;非因果分数阶滤波器及其图像处理应用研究[D];南京航空航天大学;2014年
7 王乔;分数阶混沌系统控制与同步理论研究[D];浙江大学;2015年
8 纪玉德;关于分数阶系统的稳定性与反馈控制研究[D];河北师范大学;2016年
9 宋超;几类分数阶系统的动力学分析与控制[D];东南大学;2015年
10 赵以阁;几类分数阶系统的稳定性分析与镇定控制器设计[D];山东大学;2016年
中国硕士学位论文全文数据库 前10条
1 白敬;分数阶混沌系统的滑模控制[D];北京交通大学;2012年
2 包学平;分数阶反应扩散系统中的动力学行为[D];河北师范大学;2015年
3 王伟伟;基于运算矩阵的分数阶系统辨识及应用[D];燕山大学;2015年
4 吴彩云;一类Caputo分数阶混沌系统的滑模控制[D];东北师范大学;2015年
5 葛筝;分数阶系统的自适应PID控制方法研究[D];沈阳理工大学;2015年
6 张顺;整数阶与分数阶阻尼故障转子系统振动特性对比研究[D];哈尔滨工业大学;2015年
7 宾虹;分数阶混沌系统及同步方法的研究[D];华北电力大学;2015年
8 李丹;热量传递的分数阶微分方程模型与数值模拟[D];华北理工大学;2015年
9 刘浪;分数阶系统辨识与内模控制研究[D];北京化工大学;2015年
10 吕敏;分数阶HIV感染模型的动态分析及应用[D];广西民族大学;2015年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026