收藏本站
《中国科学技术大学》 2017年
收藏 | 手机打开
二维码
手机客户端打开本文

基于CW-QCL的长光程温度气体高灵敏检测方法研究

魏敏  
【摘要】:复杂生态环境温室气体不同空间、时间尺度的浓度监测是了解温室气体源与汇的基础。目前适应生态环境温室气体长期连续监测的技术手段仍有待研究。可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)是一种非侵入式光谱测量技术,具有高选择、高灵敏度、高分辨等特点,与目前新兴的中红外量子级联激光器(Quantum Cascade Laser,QCL)相结合,可实现分子"基频"吸收光谱测量,进一步提高检测灵敏度,达到温室气体区域环境监测需求。本文深入研究了长光程开放光路的中红外波长调制TDLAS技术,设计并集成了一套长光程CH4和N20连续监测系统,研究了多组分气体交叉干扰下的光谱反演算法,实现多种温室气体高精度快速连续监测。本文选择了大气中两大主要温室气体CH4和N20作为目标气体,利用HITRAN数据库对实际大气环境进行了吸收谱线的模拟与分析,选取了1275cm-1附近CH4和N2O的相邻吸收谱线,实现了单激光器双组分测量。研究了 1275cm-1波段的CW-QCL激光器的调制特性,并结合实际测量环境对调制参数进行了优化。在系统光机设计过程中,使用二向色镜解决了红外长光程(公里量级)多光束同轴耦合的问题,设计了反射式离轴激光准直结构及基于离轴抛物面镜的开放光路收发一体光机结构,能够实现公里量级的长光程开放光路监测。本文深入研究了基于标定与免标定的多组分光谱-浓度反演算法。基于标定方法,首先提出了基于标定的多元线性拟合的WMS(Wavelength Modulation Spectroscopy)多组分反演方法,利用该方法实现了 CH4和N2O浓度准确测量,测量误差均小于5%,验证了该消除交叉干扰方法的可行性。在WMS免标定拟合算法中,通过模拟的方法并结合实际测量的激光器频率和强度响应,细致的研究了激光器的非线性频率响应与强度非线性响应对谐波信号的影响。将测量的无吸收光强信号与准确的激光器频率响应模型相结合,优化了基于吸收线型的免标定浓度反演模型,采用无吸收的光强信号即避免了原有算法模型中非常规强度响应情况下(尤其非线性响应显著)准确的强度解析模型的建立问题,包含了所有的光强信息(非线性响应特性、寄生的无法消除的干涉噪声、背景吸收特征等);采用包含一阶和二阶频率响应项及其时间依赖系数的激光器频率响应模型,实现了 v(t)的准确测量,解决了原有常规激光器频率响应模型的应用局限问题,使该算法模型适于非线性显著或非常规强度响应情况,更具普适性。以CH4为例,对该免标定方法进行了很好的验证,在浓度为60~1200ppm*m(A~0.029~0.57cm-1)范围内,WMS免标定拟合残差均小于2%,反演浓度线性度达到0.99996。在测量系统设计与浓度反演算法的研究基础上,测试与分析了该测量系统的精度、稳定性、线性度及检测限等性能指标,测试结果表明该系统完全满足环境大气CH4和N20同时在线测量的需求。利用该测量系统,在合肥科学岛进行了外场实验,实现了环境大气CH4和N2O的连续高灵敏监测(光程690m),为不同生态环境尺度不同时间分辨下的温室气体高灵敏测量奠定了基础。
【关键词】:量子级联激光器 温室气体 可调谐激光吸收光谱技术 波长调制免标定
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O433;TN248
【目录】:
  • 摘要5-7
  • ABSTRACT7-12
  • 第1章 引言12-22
  • 1.1 研究背景与意义12-13
  • 1.2 温室气体检测技术13-16
  • 1.3 基于QCL吸收光谱检高灵敏气体测技术研究现状16-20
  • 1.4 本文研究内容20-22
  • 第2章 激光吸收光谱技术原理22-36
  • 2.1 吸收光谱原理22-25
  • 2.2 波长扫描式直接吸收光谱技术25-28
  • 2.3 波长调制光谱技术28-34
  • 2.3.1 波长调制基本理论29-30
  • 2.3.2 波长调制标定方法理论30-31
  • 2.3.3 波长调制免标定方法(WMS-2f/1f)31-34
  • 2.4 本章小结34-36
  • 第3章 CW-QCL长光程温室气体检测系统设计36-60
  • 3.1 吸收谱线的选择37-40
  • 3.2 激光器及其控制单元40-44
  • 3.2.1 激光器40-41
  • 3.2.2 激光器电流及温度控制41-44
  • 3.3 光学系统设计44-50
  • 3.3.1 多光束耦合模块45
  • 3.3.2 长光程收发一体光机结构设计45-47
  • 3.3.3 中红外光束准直光学系统47-50
  • 3.4 信号采集与数字锁相算法设计50-53
  • 3.4.1 信号采集与处理单元50-52
  • 3.4.2 基于Labview数字锁相算法设计52-53
  • 3.5 激光器调制特性及参数优化53-59
  • 3.5.1 激光器调制特性分析53-57
  • 3.5.2 激光器调制参数优化57-59
  • 3.6 本章小结59-60
  • 第4章 WMS光谱处理方法研究60-92
  • 4.1 基于多元线性拟合的WMS消除交叉干扰方法研究60-69
  • 4.1.1 多元线性拟合算法60-62
  • 4.1.2 算法验证装置及实验结果62-69
  • 4.2 波长调制免标定测量方法研究69-88
  • 4.2.1 波长扫描式波长调制免标定算法研究70-74
  • 4.2.2 波长扫描式波长调制免标定实验验证74-86
  • 4.2.2.1 实验装置74-76
  • 4.2.2.2 实验结果分析及讨论76-86
  • 4.2.3 v(t)与I_0(t)的影响分析86-88
  • 4.3 长光程温室气体在线反演程序设计88-90
  • 4.4 本章小结90-92
  • 第5章 系统性能分析及实验研究92-104
  • 5.1 测量系统性能分析92-97
  • 5.2 大气环境CH_4和N_2O连续测量结果与分析97-103
  • 5.3 本章小结103-104
  • 第6章 总结与展望104-108
  • 6.1 总结104-106
  • 6.2 创新点106-107
  • 6.3 后期工作展望107-108
  • 参考文献108-120
  • 致谢120-122
  • 在读期间发表的学术论文与取得的其他研究成果122

【相似文献】
中国期刊全文数据库 前10条
1 洪海涛,俞朴,叶声华;光纤干涉测距中光程定位的研究[J];光学学报;2000年02期
2 李莉;光程差计算中的近似问题[J];大学物理;2002年04期
3 刘博学;干涉中光程差的计算[J];延边大学学报(自然科学版);2004年04期
4 江立辉;蔡春潮;梁建波;彭广生;张红;邓诚先;;差动光程差倍增法测量微小位移[J];物理实验;2009年06期
5 廖腊梅;贺健;张庆国;;光线通过傅里叶变换红外光谱仪的光程差分析[J];红外;2011年12期
6 韩雁冰;罗红雷;李慧玲;;浅谈“光程”概念的引入[J];教育教学论坛;2012年09期
7 张尹馨;杨怀栋;黄战华;金国藩;;离面准李特洛色散光路的光程差[J];光谱学与光谱分析;2013年07期
8 森火;;杂乱光程波动对激光测距精度的影响[J];激光与红外;1978年08期
9 朱若谷;用矩阵方法讨论稳定平凹法布里-珀罗共振腔的失调对光程差影响[J];光学学报;1982年06期
10 张武;张广成;罗建;;应用显微激光分析仪精密测量透明材料的光程差[J];实验力学;1991年04期
中国重要会议论文全文数据库 前4条
1 郑国梁;李玲;陶科玉;吕雅莉;;光程概念在基础光学教学中的重要性[A];中国光学学会2011年学术大会摘要集[C];2011年
2 张记龙;陈友华;王志斌;景宁;魏海潮;赵冬娥;;高光程差弹光调制干涉具动态谐振模型建立与分析[A];中国光学学会2011年学术大会摘要集[C];2011年
3 李锡善;李萍;;光学介质中的微小光程差测量——光学材料测量技术发展和展望[A];第十一届全国光学测试学术讨论会论文(摘要集)[C];2006年
4 刘子健;郭俐;;OPSIS长光程仪与API点式SO_2、NO_2仪比对研究及盆地气侯对长光程仪影响分析[A];四川省第十一次环境监测学术交流会论文集[C];2010年
中国博士学位论文全文数据库 前3条
1 魏敏;基于CW-QCL的长光程温度气体高灵敏检测方法研究[D];中国科学技术大学;2017年
2 张亮;基于游标效应和光程差放大的光纤传感增敏机理研究[D];华中科技大学;2014年
3 孟婕;多普勒光学相干层析成像方法与应用研究[D];浙江大学;2010年
中国硕士学位论文全文数据库 前3条
1 李付广;碟片激光晶体热畸变特性的光学诊断与分析[D];华中科技大学;2014年
2 张瑞;双PEMs差频调制型傅里叶—贝塞尔变换光谱测量技术研究[D];中北大学;2014年
3 郑伟;基于FTIR的环境气体监测系统研究[D];天津大学;2006年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026