收藏本站
《中国科学技术大学》 2019年
收藏 | 手机打开
二维码
手机客户端打开本文

可重构平台上面向卷积神经网络的异构多核加速方法研究

宫磊  
【摘要】:卷积神经网络源自于传统的人工神经网络,其作为机器学习中的一类重要算法已经被广泛部署于人工智能、计算机视觉等应用场景中。由于现实世界中应用的复杂度与日俱增,网络模型的规模和深度也在不断增加,导致通用计算平台在处理相关任务时面临严峻性能、能效挑战。在这种背景下,基于ASIC、FPGA的硬件加速方法已经在卷积神经网络的部署中被普遍采用,并成为提高计算效率的重要手段。然而,目前主流加速器的单核片上结构和计算模式与卷积神经网络的内在计算特性存在失配性问题。尤其是在FPGA一类的可重构器件上,硬件的可重构特性将这种失配性进一步凸显,严重影响了计算效率的进一步提升。本文面向卷积神经网络的高效硬件部署,将可重构计算技术与异构多核体系结构深度结合,在静态重构和动态重构两个层面上系统性地提出了基于异构多核片上结构的加速器设计和优化方法,有效缓解了硬件加速中的软硬件特征失配问题。具体工作内容和创新点如下:·我们在静态重构层面上针对特定网络模型在特定FPGA平台上的部署提出了在片上固化全网络层的异构多核加速器结构。在该结构中,不同网络层的计算被各自映射至独享的计算核心,在局部上各片上计算核心可根据所对应网络层的并行特征进行单独部署和优化;在宏观上,不同计算核心以层间流水的方式充分挖掘了层间计算并行度;在此基础上,我们使用Roofline多核性能分析模型在宏观和局部上进行片上计算与片外访存间的相互协调。该加速器结构在高性能FPGA平台上对AlexNet和VGG16D的部署相较以往在相同FPGA平台上的单核加速器部署性能提升了2.44倍,能效提升了2.35倍。·在片上固化全网络层结构的基础上,我们在静态重构层面上提出了面向层级特征的异构多核片上结构。通过对目前常见卷积神经网络硬件加速过程的分析,我们发现了两点规律:第一,不同卷积层对不同类型数据的访存行为存在差异,从而在异构多核结构中进行分别部署可以最大程度降低访存开销;第二,尽管不同网络层在整体结构上存在差异,但在经过循环展开和分片操作后其中某些层会呈现出相似的层级特征,从而在这一类网络层间进行硬件单元复用可以达到较高的硬件资源利用效率。分别基于以上两点,我们面向网络的层级特征提出了粗粒度和细粒度的网络层聚类方法,并在此基础上将软、硬件间的特征匹配粒度增大,提出了面向层级特征的异构多核加速器部署方法。该方法在高性能FPGA平台上对AlexNet、VGG16C、VGG16D、VGG19的部署相较以往在相同FPGA平台上的单核加速器部署性能平均提升了1.64倍,能效提升了1.84倍。·在动态重构层面上,我们基于FPGA的动态部分重构技术提出了软、硬件特征动态适配的异构多核加速方法。我们首次将FPGA的动态部分重构技术引入到卷积神经网络的硬件加速器设计中,为底层硬件结构提供在运行时根据上层应用特征进行动态调整的机制。在此基础上,我们对硬件加速过程进行了面向马尔科夫决策过程的系统建模,并通过深度强化学习的方法为特定网络模型的硬件加速器部署确定最优的运行时重构策略,从而更加全面、充分地挖掘可重构硬件特性来提高计算适配性。该方法在嵌入式FPGA平台上对AlexNet和VGG16D的部署相较以往在同类型FPGA平台上的单核加速器结构性能密度平均提升了1.48倍。
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:TP18;TP391.41

【相似文献】
中国期刊全文数据库 前10条
1 胡悦;;金融市场中的神经网络拐点预测法[J];金融经济;2017年18期
2 陈晓燕;;浅析简单神经网络的发展及简单模型[J];数字技术与应用;2019年05期
3 迟惠生;陈珂;;1995年世界神经网络大会述评[J];国际学术动态;1996年01期
4 吴立可;;脉冲神经网络和行为识别[J];通讯世界;2018年12期
5 林嘉应;郑柏伦;刘捷;;基于卷积神经网络的船舶分类模型[J];信息技术与信息化;2019年02期
6 俞颂华;;卷积神经网络的发展与应用综述[J];信息通信;2019年02期
7 韩真;凯文·哈特尼特;;为神经网络的通用理论建造基石[J];世界科学;2019年04期
8 鲍伟强;陈娟;熊涛;;基于进化神经网络的短期电力负荷预测研究[J];电工技术;2019年11期
9 王丽华;杨秀萍;王皓;高峥翔;;智能双轮平衡车的设计研究[J];数字技术与应用;2018年04期
10 张庭略;;基于硬件的神经网络加速[J];通讯世界;2018年08期
中国重要会议论文全文数据库 前10条
1 孙军田;张喆;;基于神经网络数据挖掘技术确定灾害等级的灭火救援出动力量模型研究[A];2016中国消防协会科学技术年会论文集[C];2016年
2 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
3 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
4 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
5 李涛;费树岷;;具有变时滞Cohen-Grossberg神经网络的指数稳定性准则[A];第二十六届中国控制会议论文集[C];2007年
6 汪灵枝;秦发金;;具有变时滞和脉冲的离散Cohen-Grossberg神经网络的周期解[A];中国自动化学会控制理论专业委员会D卷[C];2011年
7 韩正之;林家骏;;用神经网络求解非线性相容方程[A];1993年控制理论及其应用年会论文集[C];1993年
8 林家骏;王赞基;;求解不可微优化问题的连续极大熵神经网络[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年
9 姜德宏;徐德民;任章;;基于神经网络的自校正控制器[A];1993中国控制与决策学术年会论文集[C];1993年
10 窦永丰;贝超;;模糊与神经网络结合方式及在控制中的应用[A];1997年中国控制会议论文集[C];1997年
中国重要报纸全文数据库 前10条
1 张允硕 姜正义 甄海锋 河南理工大学;基于神经网络的自适应PID控制的智能衣架[N];科学导报;2019年
2 记者 刘霞;忆阻器制成神经网络更高效[N];科技日报;2017年
3 整理 本报记者 诸玲珍 顾鸿儒;微软神经网络切割法可使加速作用超线性[N];中国电子报;2018年
4 ;神经网络小史[N];电子报;2018年
5 张敏;人机大战,到底谁会赢?[N];北京日报;2017年
6 ;人工智能将取得大面积突破[N];中国企业报;2017年
7 本报记者 龚丹韵;人机大战:人类还有优势吗[N];解放日报;2017年
8 ;人类正迎来云端机器人时代[N];中国企业报;2017年
9 张斌;谁还需要“同传”[N];文汇报;2017年
10 邓洲 中国社会科学院工业经济研究所;深度学习:人工智能进入应用阶段[N];上海证券报;2017年
中国博士学位论文全文数据库 前10条
1 陈冬冬;基于深度神经网络的视觉媒体风格转换方法研究[D];中国科学技术大学;2019年
2 韩旭;基于神经网络的文本特征表示关键技术研究[D];北京邮电大学;2019年
3 杨国花;基于级联神经网络的对话状态追踪技术研究与实现[D];北京邮电大学;2019年
4 杨威;基于卷积神经网络的高效语义分割方法研究[D];中国科学院大学(中国科学院光电技术研究所);2019年
5 雷学文;基于深度神经网络的风功率日前预测与电力系统联合调度研究[D];西安理工大学;2018年
6 陈川;忆阻神经网络的同步控制及在信息安全中的应用研究[D];北京邮电大学;2019年
7 姜春晖;深度神经网络剪枝方法研究[D];中国科学技术大学;2019年
8 昌杰;基于深度神经网络的肿瘤图像分析与处理[D];中国科学技术大学;2019年
9 宫磊;可重构平台上面向卷积神经网络的异构多核加速方法研究[D];中国科学技术大学;2019年
10 刘梅;网络系统的稳定和同步行为研究[D];新疆大学;2017年
中国硕士学位论文全文数据库 前10条
1 权峻;太阳能温室建模及智能控制策略研究[D];天津理工大学;2019年
2 钟文雅;基于深度卷积神经网络的乳腺X线图像的分类方法研究[D];南阳师范学院;2019年
3 薛花;基于聚类与神经网络的协同过滤推荐系统关键技术的研究[D];天津理工大学;2019年
4 张璐;基于深度学习的淋巴结自动分割算法研究[D];浙江大学;2019年
5 郭盼盼;基于GA-BP神经网络的多日股票价格预测[D];郑州大学;2019年
6 王旭东;基于光散射的磷矿磨矿粒度分析方法研究[D];武汉工程大学;2018年
7 熊雨点;基于深度学习的表单识别系统的研究与实现[D];武汉工程大学;2018年
8 聂若莹;基于AMDAR数据的对流云附近颠簸区预测方法研究[D];中国民用航空飞行学院;2019年
9 李高玲;基于神经网络的算法作曲与情感识别研究[D];郑州大学;2019年
10 路高飞;基于遗传算法改进BP神经网络的信用风险研究[D];郑州大学;2019年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026