灰色聚类与灰靶决策的算法研究
【摘要】:
灰色系统理论和模糊集理论都是处理不完全、不精确及不确定信息的有效工具,通过二者的结合和互补来研究不确定性问题处理的更有效和更一般化的方法,无疑是一项具有现实意义的工作。
本文正是对灰色系统理论和模糊集理论相结合进行信息处理的聚类和决策方法进行了一些有效的研究,并于研究相关理论文献的基础上,在灰色聚类方面,提出了针对区间灰数的灰色动态聚类算法。在灰靶决策方面,给出了针对离散灰数区间评价的灰靶决策新算法。其主要工作与成果如下:首先,基于灰色系统理论的思想与方法,结合运用模糊等价关系的基本思想,提出了区间灰数的相似系数公式,为灰色动态聚类奠定了基础。其次,针对以往文献中提出的灰色关联聚类算法的主观性和局限性及模糊等价聚类无法对区间灰数进行聚类,提出了区间灰数的动态聚类法,该方法使灰色关联聚类算法化繁为简,使区间灰数聚类决策更加简便可行,并将经典等价聚类算法由清晰数拓展到区间灰数,因此具有更强的通用性。第三,基于灰色系统理论的思想与方法,提出了离散灰数的上下限评价方法,并且当区间评价上下限相等时,评价值退化为白数,同时讨论了目标评价值不完备时如何用区间评价进行评价值的处理。第四,提出了离散灰数区间评价的绝对靶心距及相对靶心距公式,将经典灰靶决策算法由清晰数推广到了离散灰数区间评价的情况,给出了一种在评价背景已知的情况下处理不完备信息系统决策的算法。