收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

拟南芥转录因子WRKY71对花和分枝发育的调控机制研究

于延冲  
【摘要】:在长期的进化过程中,植物形成了一套完整的机制,用于调节自身的生长发育以适应或抵御外界生物和非生物胁迫,在这些进程中转录因子(WRKY、DREB、NAC、MYB等)发挥了重要的调控作用。 WRKY转录因子家族是近十几年来发现的一类植物特有的转录因子,它们在植物体内是非组成型表达的,受生物及非生物胁迫(水杨酸、病原诱导子、高盐、干旱、低温等)诱导,主要参与生物与非生物胁迫应答和植物衰老,有关对植物发育的调控研究报道很少,仅见参与调控了种子和表皮毛的发育。迄今为止,尚未见它们参与调控植物开花和分枝发育的报道。 植物开花是植物从营养生长到生殖生长转折的关键,具有很强的可塑性。在各种外界环境和内部因子的影响下,植物会选择在适当的时机开花进而获得生殖的成功。植物开花是一个涉及多因子相互作用的复杂系统。目前,在拟南芥中主要存在4条调控植物开花的途径:光周期途径,春化途径,自主途径和赤霉素途径。研究表明,其它一些因子也参与了开花调控,比如蔗糖和非生物胁迫因子。一些外界胁迫因子(干旱、紫外线和病原菌)能够促进植物开花,这是植物逃避逆境的一种适应机制。通常情况下,高盐胁迫会抑制拟南芥开花,其调控机制已有-些研究。但尚未见有关高盐胁迫促进植物开花的报道。 植物的分枝是从茎顶端分生组织衍生出的腋生分生组织中分化出来的,包含两个关键的发育过程:腋生分生组织在叶腋部位的形成和腋生分生组织的生长发育(腋/侧芽的生长)。它决定着植物地上部分的株型,与作物的产量密切相关。植物的分枝发育受到各种外界环境条件、遗传因素和植物激素的影响。目前,多个调控植物分枝发育的基因已被发掘。迄今,有关WRKY转录因子调控植物分枝发育的研究尚未见报道。 本研究从拟南芥激活标签突变体库中筛选得到了一株较Co1-0开花早、花器官大、植株矮小、分枝多的突变体D27。Tail-PCR和RT-PCR分析推测,该表型可能由WRKY转录因子基因WRKY71的过表达引起。遗传分析发现,该突变体的表型稳定。在此基础上,利用Col-0、D27 (WRKY71-1D)及其敲除系wrky71-1研究了WRKY71在正常条件和高盐胁迫下对拟南芥开花的作用,揭示了WRKY71介导高盐诱导拟南芥开花提前的分子机制,分析了WRKY71对拟南芥分枝发育的贡献及其可能机制,为进一步阐明拟南芥开花和分枝发育的分子调控机制奠定了基础。 主要研究过程及实验结果包括: 1.WRKY71转录因子的分离鉴定及其功能初探 1.1突变体的筛选和基因分离鉴定 从拟南芥激活标签突变体库中,筛选得到了一株突变体D27,与野生型Col-0相比,该突变体植株矮小、开花早、花器官增大、分枝多。Tail-PCR和RT-PCR分析推测,该突变体的表型可能是由WRKY71的过表达引起。购买并筛选获得了wrky71-1敲除系。 1.2 WRKY71的表达模式 时空表达模式:Real time-PCR分析发现,WRKY71在拟南芥Col-0生长的前三周内表达逐步上调,随后逐步下降;其在各个组织器官中均有表达,其中在角果中表达量最高。进一步的GUS染色分析发现,WRKY71亦在各组织器官中表达,在根、表皮毛及托叶中表达显著。亚细胞定位发现,WRKY71定位于洋葱表皮细胞和拟南芥原生质体的细胞核中。转录激活活性实验证实了该基因具有转录激活活性。 对非生物胁迫和激素的应答模式:Real time-PCR分析发现,WKRY71受高盐和ABA的诱导而高表达,其由ABA依赖的途径受高盐诱导。 1.3 WRKY71介导盐胁迫下拟南芥的早开花 以200mM NaCl处理在土壤中生长的Col-0、WRKY71-1D和wrky71-1植株(7天和10天各浇灌1L 200mM NaCl),发现WRKY71-1D在第23天开花,仅比正常条件下延迟1天,而Col-0和wrky71-1在第35天开花,比正常条件下延迟1周,说明WRKY71-1D的开花进程对高盐不敏感。 2. WRKY71调控拟南芥花发育的分子机制研究 2.1 WRKY71促进拟南芥开花的确定 WRKY71过表达植株35S::WRKY71的表型与WRKY71-1D一致,佐证了WRKY71-1D的表型是由WRKY71过表达引起的。 2.2 WRKY71在花序分生组织、花原基及花器官原基中表达 RNA原位杂交发现WRKY71在15天的花序分生组织和花原基中表达,在17天的花序分生组织和花器官原基中表达。表明WRKY71可能参与了顶端花序分生组织的形成以及花的发育。 2.3 WRKY71促进开花转折 组织学纵向切片观察发现花原基出现(开花转折)的时间分别为:100%的WRKY71-1D在第11天、90.4±5.7%的Col-0在第15天、而仅有37.6±3.3%的wrky71-1在第15天。扫描电镜结果同该结果一致,表明WRKY71具有促进拟南芥开花转折的作用。 2.4高盐胁迫下WRKY71亦促进开花转折 组织学纵向切片分析发现高盐胁迫下花原基出现的时间分别为:100%的WRKY71-1D在第12天,32.7±3.3%的Col-0在第17天,而仅有21.6±2.9%的wrky71-1在17天,表明WRKY71-1D的开花起始几乎不受到高盐的抑制。可见,WRKY71在高盐胁迫下亦促进开花转折。 综上所述,WRKY71受高盐的诱导,WRKY71的过表达促进拟南芥的开花,因此,推断WRKY71介导了高盐诱导拟南芥开花提前。 2.5 WRKY71不参与四条主要开花途径 Col-0、WRKY71-1D和wrky71-1均能正常应答日照长度(长日照和短日照)、低温和GA信号,在处理条件下,WRKY71-1D的开花时间依然早于Col-0和wrky71-1。四条途径中的一些相关基因在三系中表达水平相近,而WRKY71在一些开花突变体(gi-2、co、ft、fve-4、Id-1、fld-1、fca-9)中的表达变化亦不明显,表明WRKY71可能不参与上述4条途径。 2.6 WRKY71通过影响蔗糖运输而促进拟南芥开花 RT-PCR分析发现蔗糖合成代谢和信号转导的相关基因在三系中的表达差异不明显,表明WRKY71可能不影响拟南芥蔗糖的合成代谢和信号转导。蔗糖转运子基因SUC8和SUC9在WRKY71-1D中表达下调,EMSA实验证明WRKY71与SUC8和SUC9启动子区的W-box结合,表明WRKY71通过直接抑制SUC8和SUC9的表达,促进胞外蔗糖运输到茎顶端以促进拟南芥的开花。 2.7 WRKY71促进花分生组织决定基因表达 Real time-PCR分析发现在非盐胁迫和盐胁迫条件下,花分生组织决定基因LFY、API、CAL和FUL在WRKY71-1D中均上调表达。这与WRKY71-1D在非盐胁迫和盐胁迫条件下开花早的表型一致。 2.8 WRKY71结合LFY启动子的W-box EMSA实验证明WRKY71能强烈地结合在LFY启动子的W-box上,微弱地结合在CAL启动子的W-box上,不能与AP1启动子的W-box结合;ChIP实验亦证明了WRKY71能结合在LFY启动子的W-box上,而不能与CAL结合,表明WRKY71通过直接上调LFY表达而促进拟南芥开花。 2.9杂交互补验证 对(?)WRKY71-1D×LFY::GUS杂交种和LFY::GUS进行GUS染色分析发现,前者的GUS活性高于后者,表明WRKY71可提高LFY的翻译水平。 WRKY71-1D×lfy植株与WRKY71-1D表型相似,但是不能开花结实,表明LFY的缺失阻断了WRKY71-1D的开花,从而证实了WRKY71是通过调控上调LFY表达来促进拟南芥的开花。 2.10 WRKY71促进拟南芥花器官的发育 WRKY71-1D的萼片、花瓣、雄蕊和心皮均比Col-0和wrky71-1的大,其花器官发育快速。Real time-PCR分析发现,花器官发育相关基因AP1、AP3和AG,花器官大小的基因UFO和干细胞维持和分化相关基因WUS和CLV3在WRKY71-1D中表达上调。ChIP和EMSA实验证明WRKY71仅能与AP3启动子的W-box结合,而不能与UFO和WUS结合,表明WRKY71通过直接或间接地上调上述基因引起花器官发育提前和花器官增大。 总之,拟南芥WRKY71通过直接上调LFY,间接上调AP1、CAL和FUL来促进开花起始;通过直接上调AP3,间接上调AP1和AG而促进花器官发育;间接上调UFO而促进花器官增大;间接上调WUS和CLV3而提高顶端分生组织活性而加快茎顶端分生组织干细胞的增殖和分化。 3.WRKY71调控拟南芥分枝发育的功能研究 3.1 WRKY71-1D突变体分枝数目增多 对长日照下生长7周的Col-0、WRKY71-1D和wrky71-1进行了株高、角果数、分枝数目和附着枝数目统计,发现:三者的平均株高分别为34.2±3.4、9.1±0.6、34.7±2.8cm;平均结荚率分别为128.7±30.2、62.5±18.8、129.6±32.2个;分枝总数分别为55.1±6.1、27.3±2.3、25.3±3.6个;附着枝数分别为22.6±5.3、1.1±0.8、1.2±0.4个。 3.2 WRKY71-1D的腋芽不休眠 组织学纵向切片分析发现,WRKY71-1D植株腋芽出现在13天,15天时已膨大,而Col-0和wrky71-1在15天还未见腋芽发生。扫描电镜观察发现,WRKY71-1D莲座叶腋芽在21天已见花原基,而Col-0仅分化出叶子,wrky71-1仅见叶原基。生长至32天时,WRKY71-1D腋芽生长发育成侧枝,而Col-0和wrky71-1侧芽仍处于休眠状态,表明WRKY71参与调控了拟南芥侧枝的形成和发育过程。 3.3 WRKY71在叶腋处表达 通过RNA原位杂交分析发现,WRKY71在Col-0的叶腋处表达,进一步表明WRKY71参与了拟南芥侧枝的形成进程。 3.4 WRKY71促进分枝基因的表达 调控分枝发育相关基因的表达分析发现,WRKY71-1D中RAX2表达明显的上调,LAS表达微弱的上调。EMSA实验证明,WRKY71与RAX2启动子的W-box结合,表明WRKY71通过直接上调RAX2而引起拟南芥的多分枝。 3.5 WRKY71-1D维管束发育缺陷 对Col-0、WRKY71-1D和wrky71-1茎的横切面结构的观察发现,WRKY71-1D茎很细,仅有6个维管束,比Col-0少两个;其束间形成层细胞层数比Col-0多1-2层,表明WRKY71-1D的茎维管束系统发育有缺陷。已知拟南芥维管束发育与生长素的功能密切相关,尤其是生长素运输能力对维管束发育影响大,因此,推测WRKY71可能参与了生长素运输的调控。 3.6 WRKY71促进生长素的运输 离体节点实验分别将带有腋芽的Col-0、WRKY71-1D和wrky71-1茎段上端插入含有1μM 2,4-D的1/2MS培养基中,下端插入不含2,4-D的1/2MS培养基中,腋芽朝上培养7天,发现Col-0和wrky71-1腋芽有一定程度的伸长生长,而WRKY71-1D腋芽未见生长,推测在WRKY71-1D中侧芽生长的抑制可能与其生长素运输能力的增强有关。 生长素运输基因表达生长素运输相关基因的表达分析发现,PIN1在WRKY71-1D中上调表达,表明WRKY71可能通过提高生长素运输能力对分枝发育起作用。 3.7 WRKY71不影响生长素的生物合成 分析生长素合成相关基因表达水平发现,NIT4和CYP79B3在WRKY71-1D中下调表达。但HPLC分析发现,Col-0、WRKY71-1D和wrky71-1中自由IAA含量相近,表明WRKY71不影响拟南芥体内生长素的合成。 3.8 WRKY71不影响生长素的信号转导 将生长4天的Col-0、WRKY71-1D和wrky71-1转入含10nM和1μM的IAA的1/2MS培养基上生长至14天,发现三系的主根、侧根数目及其长度变化不大,表明WRKY71-1D能正常的响应生长素信号。RT-PCR分析发现,生长素信号转导相关基因在三系中表达差异不明显,表明WRKY71可能不参与生长素的信号转导。 结论,WRKY71通过直接上调RAX2引起了拟南芥分枝增多,通过提高生长素的运输能力对分枝发育起作用。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 高国庆,储成才,刘小强,李杨瑞;植物WRKY转录因子家族研究进展[J];植物学通报;2005年01期
2 郝林,徐昕;植物转录因子WRKY家族的结构及功能[J];植物生理学通讯;2004年02期
3 李蕾,谢丙炎,戴小枫,杨宇红;WRKY转录因子及其在植物防御反应中的作用[J];分子植物育种;2005年03期
4 仇玉萍,荆邵娟,付坚,李璐,余迪求;13个水稻WRKY基因的克隆及其表达谱分析[J];科学通报;2004年18期
5 王海华,郝中娜,谢科,吴坤陆,郭泽建;水稻WRKY89中的亮氨酸拉链结构增强蛋白与W盒元件的相互作用[J];科学通报;2005年10期
6 苏琦;尚宇航;杜密英;杜进民;;植物WRKY转录因子研究进展[J];中国农学通报;2007年05期
7 田云;卢向阳;彭丽莎;方俊;;植物WRKY转录因子结构特点及其生物学功能[J];遗传;2006年12期
8 于延冲;乔孟;刘振华;向凤宁;;WRKY转录因子功能的多样化[J];生命科学;2010年04期
9 张娟;;WRKY转录因子功能研究进展[J];西北植物学报;2009年10期
10 刘戈宇;胡鸢雷;祝建波;;植物WRKY蛋白家族的结构及其功能[J];生命的化学;2006年03期
11 黄金存;叶冰莹;许玉芬;黄祖新;张华;许莉萍;陈由强;陈如凯;;转录因子WRKY和NPR1在系统获得抗性信号转导中的相互作用机制[J];生物技术通讯;2007年06期
12 常李伟;;植物WRKY转录因子的结构及功能研究进展[J];科协论坛(下半月);2011年05期
13 王海华,谢科,吴坤陆,郭泽建;稻瘟菌诱导的水稻WRKY基因OsWRKY52的分离和鉴定(英文)[J];生物化学与生物物理进展;2005年10期
14 张兰;王晓萍;毕影东;张春义;范云六;王磊;;大豆转录因子GmWRKY57B的基因克隆及功能分析[J];科学通报;2008年21期
15 欧阳石文;植物WRKY转录因子[J];生命的化学;2001年03期
16 张利平;余迪求;;APETALA1突变影响WRKY基因的基础表达[J];云南植物研究;2010年04期
17 桑新华,吴忠义,黄丛林,张潞生;植物逆境抗性相关转录因子的研究进展[J];植物学通报;2004年06期
18 阚云超,郭泽建,李德葆;转录因子IosWRKY基因的原核表达及其与顺式元件的结合[J];浙江大学学报(农业与生命科学版);2003年01期
19 马雅琴,翁跃进,赵勇,郭宝生,许兴;植物耐盐相关基因克隆的研究进展[J];植物遗传资源学报;2004年01期
20 孙淑贞,林德球,蒋跃明;植物抗冻蛋白研究进展(综述)[J];亚热带植物科学;2002年S1期
中国重要会议论文全文数据库 前10条
1 ;A group of conserved SPTT domain containing WRKY transcription factors are potential substrates of MAP kinases in plants[A];第六届中国植物逆境生理学与分子生物学学术研讨会论文摘要汇编[C];2010年
2 陈益芳;徐谦;王慧;武维华;;拟南芥WRKY转录因子在植物响应低磷胁迫中的功能分析[A];中国植物学会植物细胞生物学2010年学术年会论文摘要汇编[C];2010年
3 王晨;刘磊;姚凝聪;谭翼;马会;王夏天;何光源;杨广笑;;小麦WRKY基因的克隆、表达分析及其遗传转化[A];中国的遗传学研究——遗传学进步推动中国西部经济与社会发展——2011年中国遗传学会大会论文摘要汇编[C];2011年
4 邹长松;江文波;余迪求;;拟南芥雄配子特异表达的WRKY34基因负调控成熟花粉抗冷性[A];中国的遗传学研究——遗传学进步推动中国西部经济与社会发展——2011年中国遗传学会大会论文摘要汇编[C];2011年
5 王海华;郝中娜;谢科;吴坤陆;郭泽建;;水稻WRKY蛋白OsWRKY87的分析[A];中国植物病理学会2004年学术年会论文集[C];2004年
6 ;The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice[A];现代分子植物育种与粮食安全研讨会论文集[C];2011年
7 邹长松;江文波;余迪求;;Male gametophyte-specific WRKY34 transcription factor negatively mediates cold stress tolerance of mature pollen in Arabidopsis[A];中国植物学会植物细胞生物学2010年学术年会论文摘要汇编[C];2010年
8 王彦华;侯喜林;;不结球白菜WRKY转录因子cDNA片段的克隆及分析[A];蔬菜分子育种研讨会论文集[C];2004年
9 于延冲;向凤宁;;AtWRKY5转录因子调控拟南芥的开花时间[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年
10 梁姗姗;于涌鲲;王丽芳;赵福宽;杜希华;孙清鹏;;茉莉酸诱导的番茄WRKY克隆[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年
中国博士学位论文全文数据库 前10条
1 于延冲;拟南芥转录因子WRKY71对花和分枝发育的调控机制研究[D];山东大学;2011年
2 王慧;拟南芥WRKY45转录因子参与响应低磷胁迫的实验证据[D];中国农业大学;2014年
3 赵天田;平榛WRKY转录因子的克隆与功能鉴定[D];中国林业科学研究院;2012年
4 王晨;小麦基因组中WRKY转录因子家族基因鉴定、克隆和TaWRKY10基因的功能分析[D];华中科技大学;2013年
5 江文波;拟南芥WRKY2转录调控因子的功能研究[D];中国科学院研究生院(西双版纳热带植物园);2009年
6 凌键;黄瓜WRKY基因家族及microRNA的鉴定与分析[D];中国农业科学院;2012年
7 付乾堂;拟南芥WRKY25和At2g03440编码的结瘤相关蛋白抗热功能分析[D];中国科学院研究生院(西双版纳热带植物园);2009年
8 郑井元;辣椒WRKY转录因子CaWRKY6和CaWRKY30基因的克隆、表达及功能分析[D];中南大学;2012年
9 张春秋;辣椒Me3基因介导抗根结线虫WRKY基因CaRKNIF1的分离及其功能分析[D];中国农业科学院;2010年
10 赵亮;四倍体栽培棉种高密度遗传图谱的加密及棉花红株R_1和茸毛T_1基因的精细定位[D];南京农业大学;2012年
中国硕士学位论文全文数据库 前10条
1 王丽芳;番茄WRKY基因克隆及分析[D];山东师范大学;2010年
2 贾翠玲;葡萄WRKY基因超家族的进化分析[D];辽宁师范大学;2010年
3 何红升;杨树全基因组WRKY基因的鉴定及表达分析[D];安徽农业大学;2012年
4 张娜;陆地棉三个WRKY基因的克隆及表达特性分析[D];山东农业大学;2012年
5 江腾;玉米和苜蓿全基因组WRKY基因的分析及进化研究[D];安徽农业大学;2011年
6 冯泊润;WRKY转录因子在玉米基因组中的分布规律及其中参与抗病相关基因的筛选[D];四川农业大学;2013年
7 喻门;小麦WRKY基因的克隆及其在逆境胁迫反应下的表达变化[D];华中科技大学;2009年
8 张雅涵;黄瓜根结线虫取食位点早期形成相关WRKY基因的分离与分析[D];中国农业科学院;2011年
9 喻门;小麦WRKY基因的克隆及其在逆境胁迫反应下的表达变化[D];华中科技大学;2009年
10 刘磊;小麦WRKY基因的克隆、表达分析及其遗传转化[D];华中科技大学;2011年
中国重要报纸全文数据库 前1条
1 本报记者 操秀英;探索植物适应环境胁迫的奥秘[N];科技日报;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978