收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

带奇异摄动马氏链的倒向随机微分方程及其应用

陶然  
【摘要】:本篇论文主要讨论带奇异摄动马氏链的倒向随机微分方程(BSDEs)及相应偏微分方程(PDEs)的渐进性质和在随机控制及金融数学中的应用.论文包括以下三个部分:第一部分研究带奇异摄动马氏链的倒向随机微分方程在Meyer-Zheng拓扑下的弱收敛问题;第二部分研究随机体制转换系统的最优转换问题,通过带马氏链的斜反射倒向随机微分方程得到转换问题的最优解,并在奇异摄动马氏链情形下,得到相应变分不等式的渐进性质;第三部分给出带马氏链的倒向随机微分方程在随机控制中的一个应用,即正倒向体制转换系统的随机最大值原理. 本文中奇异摄动马氏链指转移速率为多时间尺度的马氏链.在许多物理模型中,系统中的组成元素以不同的速率发生变化,为了定量的研究这种变化,并且降低模型的复杂度,我们运用奇异摄动的方法,即假设马氏链的转移速率为两个时间尺度,进而把与快速变换相关的变量平均化,得到与平稳分布相关的极限问题.具体来说,我们假设马氏链at=αtε的生成矩阵为Qε(t)=Q(t)/ε+Q(t).这里,ε0是一个时间参数,并且Q(t)和Q(t)都是一个马氏链的转移矩阵,其中Q(t)表示快速转换部分,Q(t)表示慢速部分.我们将研究在ε→0时,相应方程及优化控制问题的渐进性质.通过得到简化的极限问题,可以降低问题的计算复杂度. 下面将进一步介绍论文的内容及结构. 第一章,介绍本文中所研究问题的背景及基础知识. 第二章,我们研究了奇异摄动马氏链的倒向随机微分方程在Meyer-Zheng拓扑下的弱收敛问题.我们首先通过估计得到带参数ε的一族倒向随机微分方程的紧性,然后通过鞅问题刻画了极限过程.通过倒向随机微分方程给出的概率表示,我们得到相应偏微分方程在ε→0时的收敛性,并给出了数值计算例子.本章主要来自于: R. Tao, Z. Wu and Q. Zhang, BSDEs with regime switching:Weak convergence and applications, Journal of Mathematical Analysis and Applications,407(1),97-111,2013. 第三章,我们研究了体制转换系统的最优转换问题,其中体制转换系统由带马氏链αt的随机微分方程描述,决策者可以在有限的控制集I={1,2,...,N}中转换状态以最大化效用函数.此问题存在两个“状态转换”,at的状态转换由市场确定,另一个由决策者根据市场体制及市场价格决定.我们通过带马氏链的斜反射倒向随机微分方程刻画了值函数,并构造出最优的转换策略.在马氏链的转移速率为两尺度的情形下,我们通过倒向随机微分方程方法证明了相应变分不等式的收敛性,从而证明了值函数的收敛性.我们也给出了一个数值计算的例子.本章主要来自于: R. Tao, Z. Wu and Q. Zhang, Optimal switching under a regime switching model with two-time-scale Markov chains,已投稿. 第四章,我们研究了正倒向随机控制系统的最大值原理.假设系统由带马氏链的耦合的正倒向随机控制方程描述,控制域为凸集,通过凸变分方法,我们给出了最优控制存在的必要和充分条件,并给出一个在投资消费问题中的应用.本章主要来自于: R. Tao and Z. Wu, Maximum principle for optimal control problems of forward-backward regime-switching system and applications, System and Control Letters,61(9),911-917,2012. 下面我们给出本论文的主要结论.1.带奇异摄动马氏链的倒向随机微分方程弱收敛问题 我们的目的是研究如下倒向随机微分方程的弱收敛:其中,马氏链αε(t)的生成矩阵为马氏链的状态空间为M=M1∪…∪Ml,其中Mk={Skl,…,skmk},这里K∈{1,...,L}, M=m1+…+ml.另外,Q(t)有对角线结构其中,(?)k∈{1,…l},Qk(t)是一个状态空间是Mk的马氏链的生成矩阵. Xεt是带奇异摄动马氏链αεt的随机微分方程的解 马氏链αt或者它的生成矩阵Q(t)称为弱不可约,如果有唯一的非负解v(t)=(v1(t),...,vm0(t)).此解称为马氏链αt或者它的生成矩阵Q(t)的拟平稳分布. 这一部分的主要结果是如下定理: 定理0.1.Yεt是BSDEs(0.0.1)的解.在假设条件似2.3-A2.7)下,随机过程Yεt弱收敛于过程Yt,其中Yt是BSDE的解.这里,Bt是一个布朗运动,Vt(j)是马氏链αt的补偿鞅测度.αt的生成矩阵为Q(t)=diag(v1(t),...,v1(t))Q(t)diag(1m1,...,1ml).这里,1mk.=(1,...,1)'∈Rmk是一个mk维列向量,vk(t)=(v1k(t),…,vmkk(t))∈R1×mk是QK(t)的拟平稳分布..f的定义为F(t,i,x,y)=∑jmi=1v3i(t)f(t,sij,x,y). 为证明此定理,首先根据Meyer-Zheng判定准则得到Yεt的紧性.为了刻画极限过程,考虑如下算子其中这里Q(t)ij=(λij(t)),b,a的定义为通过算子g对应鞅问题解的唯一性,我们可以刻画Yεt的极限过程. 然后,我们分别在粘性解和经典解意义下,通过BSDE(0.0.1)给出对应耦合PDE方程组的概率表示,进而得到PDE方程组的收敛.这部分的主要结果是: 定理0.2.uε是如下反应扩散方程的唯一粘性解 则Vt∈[0,T]和x∈Rn,当ε→0,uε(t,x)收敛于u(t,x),其中u是下列方程唯一的粘性解 注0.1.uε(t,x)收敛于u(t,x)表示对于任给的(t,x)∈[0,T]×Rn和i∈Mk, uε(t,i,x)→u(t,k,x). 定理0.3.在假设条件(A2.3-A2.4)和(A2.6-A2.11)下,方程(0.0.3)有唯一的C1,2b解uε()t[0,T]和x∈Rn,当ε→0uε(t,x)收敛于u(t,x),这里u是极限方程(0.0.4)的唯一C1,2b解. 2.带奇异摄动马氏链的随机系统的最优转换问题及其渐进性质在这一部分,我们主要研究如下体制转换系统的最优转换问题,其中α(s)是连续时间有限状态时齐的马氏链. 决策者可以在有限的转换控制集N={1,...,N}中选择,即一个转换控制过程是一列(τn,ξn)n≥1,其中τn是一列停时,表示转换的时间,ξn是一列取值于N的随机变量,表示转换之后的状态.给定初始时间t和初始状态i,一个转换控制过程可以表示为这里1是一个示性函数. 我们的目标是选择一个转换控制过程Iti*来最大化效用函数 其中gij是从状态i变换到j的固定成本.Vi,p(t,x):=J(i,t,p,x,It,i,*)称为最优转换问题的值函数. 为解决此问题,我们运用BSDE方法.考虑如下带马氏链的斜反射倒向随机微分方程: 通过惩罚函数方法,BSDE (0.0.6)解的存在性结果由如下定理得到: 定理0.4.假设(A3.1-A3.3)成立,那么,BSDE (0.0.6)存在一个解(Yt,p,x,Zt,p,x,Wt,p,x,Kt,p,x)∈S2×M2×H2×N2. 下面,我们由验证定理来说明BSDE (0.0.6)解的唯一性.对任意转换控制过程我们定义如下增过程4I:引入下列带转换控制的BSDE:上述BSDE的唯一解记为(YiI,ZiI,WiI). BSDE (0.0.6)解的唯一性及最优策略的选择可由下列验证定理得到: 定理0.5.假设(A3.1-A3.3)成立.设(Yt,p,xZt,p,x,Wt,p,x,Kt,p,x)是BSDE (0.0.6)在S2×M2×H2×N2中的一个解.那么,(1)任给I∈Ait,我们有Yit,p,x(s)≥YiI(s), s∈[t,T]. (2)令τ0*=t,ξ0=i.定义下列序列{τj*,ξj*}:其中ξ*j是一个随机变量使得那么,是最优转换问题的最优策略,并且 另外,我们有Yit,p,x(s)=YiI*(s),s∈[t,T],从而说明了BSDE(0.0.6)解的唯一性. 进一步,通过以下定理,我们给出最优转换问题的值函数对相应变分不等式的概率表示: 定理0.6.假设(A3.1-A3.3)成立.最优转换问题的值函数V(t,x)是如下变分不等式系统的唯一粘性解终端条件为Vi,p(T,x)=Φ(x), 下一部分,我们假设马氏链αε的结构为双时间尺度,即生成矩阵为αε的状态空间为M=M1∪…∪ML,其中Mk={sk1...,skmk},M=m1+…mL.生成矩阵有与第一部分相同的对角线结构.我们将研究当ε→0时最优转换问题对应变分不等式的收敛. 首先,我们给出关于增过程Kit,p,x的一个估计: 引理0.1.Kit,p,x对Lebesgue测度绝对连续,并且 考虑如下带参数ε的变分不等式系统: 下面,对于k=1,...,L,令Vi.skl(t,x)=Vi,k(t,x).定义一个平均系数的极限最优转换问题.vk=(v1k,...,vmkk)记为Qk的平稳分布.令记α为一个马氏链,生成矩阵为Q=diag(v1,...,vL)Qdiag(1m1,...,1mL),其中vk为Qk的平稳分布,1n=(1,...,1)'∈Rn.令Q=[λpq](p,q∈{1,...,L}). 考虑系数为b,σσ',f,马氏链为α的最优转换问题.对应变分不等式系统为终端条件为Vi,k(T,x)=Φ(x)其中 本部分的主要结果是: 定理0.7.对于k=1,...,L和l=1,...,mk,我们有这里,Vik(t,x)是极限变分不等式系统(0.0.9)的唯一粘性解. 3.正倒向体制转换系统的随机最大值原理 这一部分,我们主要研究如下正倒向随机控制系统的最优控制问题: 其中,马氏链的状态空间为M={1,...,k}. Wt=(Wt(1),...,Wt(k)), nt=(nt(l),..., nt(k)),其中,nt(j)=lαt-≠j}λ(αt-,j). 记U为取值与凸集U的可行控制集并且满足E∫0t|ut|2dt定义如下效用函数 这里,l,h,r是确定性函数.我们的目标是在U中寻找最优控制来最大化效用函数.首先考虑最优控制存在的必要条件. 设u(·)是最优控制问题的一个最优控制,对应的系统记为(X(·),Y(·),Z(·),W(·)).设υ(·)是另一个控制过程(不一定取值与U)并且满足u(·)+v(·)∈u.因为控制域U为凸,我们有(?)0≤p≤1, uρ(·):=u(·)+pv(·)∈u.引入如下变分方程: 首先,我们可以得到关于变分不等式的如下引理: 引理0.2.假设(A4.1-A4.3)成立,如下变分不等式成立 定义如下汉密尔顿函数H:[0,T]×M×R×R×Rl×dMρ×U×R×R1×d×R: H(t,i,x,y,z,w,u,p,k,q)=(p, b(t, i, x, u))+(k,σ(t, i, x, u))-(g, g(t, i, x, y, z, wn, u))+l(t, i, x, y, z, wn, u),(0.0.14)这里,wn=(w(l)n(1),…,w(k)n(k)), n(j)=1{i≠j}λij. 引入对偶方程: 运用Ito公式,可以得到本节的主要结果 定理0.8(最大值原理).设u(·)是一个最优控制,(X(·),Y(·),Z(·),W(·))是相应系统方程的解.(P(·),K(·),Q(·))是对偶方程的唯一解.那么,Vv∈U,我们有Hu·(v-vt)≤0,a.e.,a.s.. 在一定的凸性条件下,我们还可以得到最优控制存在的充分条件: 定理0.9.设(A4.1-44.3)成立.此外,我们假设h,r,H对于变量(X,Y,Z,u,W)是凹的(Concave),并且YT=Φ(XT)是YT=K(αT)XT这种特殊形式,这里K(i)是一个确定性函数.(P,Q,K,M)是对偶方程控制取u(·)时的唯一解.那么,u(·)是最优控制如果满足(0.0.16). 在论文的最后部分,我们给出此最大值原理在一个投资消费问题中的应用.


知网文化
【相似文献】
中国期刊全文数据库 前18条
1 黄可明,徐林建,廖静瑜,张健;由马氏链构造的复合随机场弱收敛的一些性质[J];福州大学学报(自然科学版);1998年06期
2 袁震东;;纪念概率论学者钟开莱百年诞辰[J];数学教学;2017年03期
3 刘宝慧;;三叉树上分支马氏链的等价性质[J];数学的实践与认识;2016年21期
4 陈秀引;金少华;王东;郭惠;;树指标马氏链的一个强极限定理[J];数学的实践与认识;2017年06期
5 刘建国;杨卫国;;关于可列马氏链状态出现频率延迟平均的强大数定律[J];经济数学;2017年01期
6 刘宝慧;;N叉树上分支马氏链的等价性质[J];青海大学学报;2017年03期
7 刘宝慧;;二叉树上分支马氏链的性质[J];青海师范大学学报(自然科学版);2017年02期
8 费时龙;;多重随机环境中马氏链及其强大数定律[J];浙江大学学报(理学版);2017年04期
9 张艳;杨卫国;;二叉树分枝马氏链的强大数定律和Shannon-McMillan定理[J];应用概率统计;2017年04期
10 黄敏;黄朝炎;;绕积马氏链函数的强大数定律[J];湖北大学学报(自然科学版);2016年01期
11 吴玉;崔影;范爱华;;关于可列非齐次马氏链泛函滑动平均的一类强极限定理[J];安徽工业大学学报(自然科学版);2015年01期
12 王蓓;杨卫国;石志岩;;渐近循环马氏链的收敛速度[J];数学的实践与认识;2014年16期
13 何琳;纪素娟;;用于粮食产量预测的改进的灰色—马氏链模型研究[J];食品与机械;2014年04期
14 党慧;杨卫国;;二叉树上分支马氏链的等价性质[J];应用概率统计;2014年05期
15 贾兆丽;;绕积马氏链的中心极限定理[J];大学数学;2013年01期
16 高小燕;;关于渐近循环马氏链泛函的强大数定律[J];大学数学;2013年01期
17 黄辉林;杨卫国;石志岩;;非齐次马氏链的中心极限定理(英文)[J];应用概率统计;2013年04期
18 陈晓雪;李增涛;;树指标马氏链的若干性质[J];大学数学;2012年03期
中国重要会议论文全文数据库 前7条
1 史定华;;复杂网络两个马氏链模型[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
2 钱峰;张传斌;田蔚风;金志华;;光纤陀螺温度漂移模型辨识方法研究[A];2004年船舶仪器仪表学术年会论文集[C];2004年
3 彭晓荣;吴南屏;;HIV-1 CRF01_AE亚型在东南亚的系统地理学研究[A];全国寄生虫病高峰论坛暨2016年浙江省热带病与寄生虫病学术年会论文汇编[C];2016年
4 高利仁;许顺斗;涂奉生;;多类MMDP在ATM网络中的应用及其算法[A];1997年中国控制会议论文集[C];1997年
5 彭晓荣;吴南屏;;HIV-1 CRF01_AE亚型在东南亚的系统地理学研究[A];浙江省免疫学会第十次学术大会论文集[C];2016年
6 彭亮;刘海云;刘伟兵;王先甲;;基于马氏链的重复囚徒困境博弈动态模型设计[A];第二十六届中国控制会议论文集[C];2007年
7 唐荣;董一萱;;离散时间序列化为Markov链的方法及其理论研究[A];第十一届中国不确定系统年会、第十五届中国青年信息与管理学者大会论文集[C];2013年
中国博士学位论文全文数据库 前10条
1 陶然;带奇异摄动马氏链的倒向随机微分方程及其应用[D];山东大学;2014年
2 王蓓;关于一类非齐次马氏链的强极限定理[D];江苏大学;2014年
3 肖争艳;随机环境中马氏链的极限性质[D];武汉大学;2003年
4 龙绍舜;具有随机延滞的时间序列分析[D];中南大学;2006年
5 于娜;独立马氏链边随机图过程与随机分枝树研究[D];上海大学;2012年
6 应圣钢;量子马氏链与马氏决策过程的可达性分析[D];清华大学;2015年
7 郭广报;基于并行统计计算的金融数据分析[D];山东大学;2012年
8 赵清贵;马氏链在若干合作网络中的应用[D];中南大学;2010年
9 张玄;随机活动网络的理论与应用研究[D];中南大学;2012年
10 石志岩;关于树上高阶马氏链极限性质的研究[D];江苏大学;2011年
中国硕士学位论文全文数据库 前10条
1 丁洁;基于马氏链样本的支持向量机分类算法的推广性能[D];湖北大学;2017年
2 莫小梅;ERM算法的一致性[D];湖北大学;2017年
3 王海如;关于信息论中的若干理论问题的研究[D];安徽工业大学;2018年
4 姚启峰;随机环境中马氏链若干问题的研究[D];安徽工业大学;2018年
5 韩梦醒;个股走势预测的k-means聚类马氏链方法研究[D];哈尔滨工业大学;2018年
6 刘建国;关于可列马氏链状态出现频率延迟平均的强大数定律[D];江苏大学;2017年
7 孙鹏飞;非齐次马氏链广义熵遍历定理的推广[D];江苏大学;2017年
8 刘华军;可列非齐次m重马氏链的强极限定理及其应用[D];景德镇陶瓷学院;2011年
9 陈小丽;可列非齐次马氏链泛函的强大数定律[D];江苏大学;2009年
10 刘杰;关于有限m重非齐次马氏链的强大数定律[D];江苏大学;2008年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978