收藏本站
《山东大学》 2016年
收藏 | 手机打开
二维码
手机客户端打开本文

系列铋基金属有机框架材料的制备、表征及其光催化性能的研究

王冠芝  
【摘要】:金属有机框架(Metal-Organic Frameworks, MOFs)材料是一类利用金属离子或者金属氧化物团簇与有机配体之间的配位键作用组装成的具有网状框架结构的多孔固体材料。近年来,MOFs材料由于其比表面积大,高孔隙度以及结构-功能的多样可调性等结构性质,在多个领域如气体储存、选择性吸附与分离、催化、发光材料以及药物载体等各方面具有很好的应用前景。其中,光催化能够将太阳能转换为电能、化学能,进而用来分解水产生可再生氢能,降解污染物,还原C02等,成为解决能源短缺及环境污染等问题的有效途径,因此MOFs材料在光催化领域的应用受到广泛关注。MOFs材料在光催化上有其独特的优势,主要表现在两个方面:(1)结构-功能的可调性;(2)大的孔隙度和排列有序的孔道结构。利用MOFs材料结构-功能的可调性,通过对金属位点和有机配体的改变或者修饰等手段,实现对材料光催化性能的调节。具体在光催化上,表现为调节材料光吸收范围;提高载流子分离效率;暴露的不饱和金属位点促进光催化反应。此外,MOFs材料具有大的孔隙度、比表面积以及排列有序的孔道结构,有利于一些客体分子的引入,使其能够直接与MOFs上的活性位点进行接触,缩短了电子传输距离,提高了载流子的传输效率,进而促进光催化反应的进行。迄今为止,已经发现一些MOFs材料具有高效的光催化性能,并且被分别应用在光催化降解污染物、光解水产氢以及还原C02等方面。但是这些光催化MOFs材料大多是基于Ti, Zr, Fe等过渡金属元素的,对其他金属基MOFs材料的光催化研究还很少,因此探究一些由主族金属或其他金属组成的光催化MOFs材料是很有必要的。铋系无机半导体表现出优异的光催化性能,成为光催化领域的一大研究热点。对铋系光催化材料的研究已成体系,而且我们课题组研究了一系列铋系光催化材料,如Bi2O3, BiOX (X=C1, Br, I), Bi2O2CO3, BiVO4, Bi2SiO5等,积累了丰富的实践和理论经验。同时铋系材料储量丰富,环境友好无毒,稳定性好,而且铋离子具有灵活多变的配位构型,有利于构建结构多样的MOFs。基于以上分析,我们推测铋基MOFs材料在光催化降解有机染料、光解水产氢、产氧等方面具有很好的应用。因此,在本论文中,我们开发了几种新型的铋基MOFs光催化材料,并研究了它们的光催化反应机理,具体内容分为五章:第一章首先介绍了MOFs材料的相关背景知识、合成方法以及主要应用领域。其次就MOFs材料在光催化领域的研究进展做了简单的概述,总结了MOFs材料在光催化上的优势以及主要的光催化机理理论。接着介绍了铋基MOFs材料在光催化领域的研究进展。最后阐述了本论文的选题意义、研究思路和主要内容。第二章主要包括MOF材料Bi-mna的制备以及光催化性能、机理的研究。利用简单的溶剂热方法制备了MOF材料Bi-mna的粉末,对其进行了XRD, TG/DTA等基本的表征,证明了样品的纯度,并对材料的结构特点进行简单介绍。通过测定光电流响应和交流阻抗谱,发现Bi-mna具有优异的光电化学性质。然后利用光降解有机物染料和光解水产氧能力来表征Bi-mna的光催化性能,结果显示Bi-mna能够在可见光照射下高效降解有机染料RhB和MB,并且在6h内持续不断分解水产生氧气,表现出了高效的光催化活性。通过对Bi-mna的能带结构和电子分布等进行理论计算,我们提出了一种新型的光催化机理理论,即配体到配体电子转移(LLCT)过程,并用实验验证了这一理论。LLCT过程的发生,能够延长材料中光生载流子的寿命,从而促进光生载流子的有效分离,提高材料的光催化效率。在第三章中,我们选用有机配体均苯三酸(H3BTC),制备两种铋基MOFs材料并对其光物理和光催化性能进行研究。(1)首先合成了一种新型铋基MOF材料Bi-BTC的单晶,并通过X射线单晶衍射技术得到了Bi-BTC的晶体结构信息。Bi-BTC中具有二聚体{Bi2014},这些{Bi2014}基团之间由配体BTC3-连接形成了三维的框架结构。同时,沿b轴方向,{Bi2014}基团通过配体的连接分别形成两种不同的螺旋链,这两种螺旋链交替排列,相邻的螺旋链共享一组{Bi2014}二聚体,以一定的夹角组装在一起。漫反射光谱研究结果表明Bi-BTC的光吸收主要由配体引起,同时配体与铋的键合使其配位环境改变,引起了漫反射光谱和荧光发射光谱中的红移现象。初步研究发现,Bi-BTC具有在全光照射下分解水产生氧气的光催化活性。(2)我们在尝试合成Bi-BTC单晶的过程中,获得了Bi-BTC的一种同素异构体BiO-BTC。BiO-BTC是以甲酸氧铋(BiOHCOO)和H3BTC作为原料进行溶剂热反应获得的。根据BiOHCOO的离子交换性质我们推测这种材料是一种层状的有机无机杂化材料,由BTC阴离子替代BiOHCOO中HCOO-层获得的。通过对材料进行EXAFS,XRD,FT-IR以及热分析等测试对以上推测进行了验证。BTC阴离子的引入并没有改变原来的层状结构,仅仅使Bi2022+层发生结构的扭曲。研究其光催化活性,发现这种材料在全光下的光催化降解RhB活性相对于BiOHCOO有明显的提高,还有一定的光解水产氧活性。我们推测由于BTC阴离子的引入,引起Bi2022+层发生结构的扭曲,影响了电子转移过程,从而提高了光生载流子的存活寿命,提高了材料光催化活性。第四章主要是对基于其他有机配体的铋基MOFs材料的制备以及光催化等性质进行探究。首先制备了一种基于3,5-吡啶二羧酸(3,5-H2PYDC)的MOFBi-PYDC,并对其结构进行了介绍。通过探究Bi-PYDC的光催化性能,发现其在全光照射下能够降解RhB染料分子。此外,还发现Bi-PYDC具有离子交换的性质,与有机配体H3BTC进行离子交换,能够得到上章提到的有机无机杂化材料BiO-BTC。之后,我们选用2-氨基对苯二甲酸(NH2-H2BDC)为有机配体,借鉴第三章中的离子交换方法,得到有机无机杂化材料BiO-BDC(NH2)。通过对其光物理和光催化性能的研究,发现BiO-BDC(NH2)具有可见光响应,而且能够在可见光照射下高效的降解有机染料RhB,具有良好的光催化活性。第五章为总结与展望。我们主要是对论文中的工作和得出的理论进行了总结,列出了论文的创新点,并提出了工作中存在的问题和不足,以及未来工作的计划。总体来说,通过本论文对一系列铋基MOFs材料的研究及其光催化性能、机理的探究,充分说明铋基MOFs材料对于光催化领域具有重要意义,可发展为一种新型的光催化材料体系。
【学位授予单位】:

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 ;光催化分解硫化氢制氢研究获进展[J];化工进展;2010年02期
2 ;光催化分解硫化氢制氢研究获进展[J];天津化工;2010年01期
3 ;光催化分解硫化氢制氢研究获进展[J];工业催化;2010年02期
4 蔡乃才,简翠英,董庆华;有机羧酸的光催化分解反应[J];感光科学与光化学;1988年04期
5 张谊华,滕玉美,曾宪康,王涵慧,俞稼镛;光催化分解硫化氢制取氢气的研究[J];感光科学与光化学;1994年02期
6 温福宇;杨金辉;宗旭;马艺;徐倩;马保军;李灿;;太阳能光催化制氢研究进展[J];化学进展;2009年11期
7 张德;;有害的硫化氢污染物可经光催化成有用的氢和硫[J];化学通报;1982年05期
8 ;水洗再生型光催化除臭滤气器[J];现代化工;2001年01期
9 甘欣;赵希娟;覃彪;傅文甫;;Pt(Ⅱ)配合物光催化制氢研究进展[J];中国材料进展;2010年01期
10 吕宏飞;李锦书;单雯妍;白雪峰;;多元金属硫化物催化剂及光催化分解硫化氢的研究进展[J];材料导报;2012年11期
11 马贵军;鄢洪建;宗旭;马保军;江宏富;温福宇;李灿;;气-固相光催化分解硫化氢制氢[J];催化学报;2008年04期
12 宋琦;挥发性有机物的光催化分解法[J];大学化学;1995年06期
13 何礼青;骆超;周前雄;侯原军;张宝文;王雪松;;利用静电吸引作用提高光催化放氢效率[J];影像科学与光化学;2011年04期
14 陈淑红;魏月琳;张晓佩;许静;黄昀昉;;镍掺杂KLaNb_2O_7的光催化性能研究[J];广东化工;2012年06期
15 汤胜山,张宁,朱静;光催化在有机合成中的应用[J];工业催化;2005年01期
16 魏翠;丁天英;陈冰冰;郑楠;石川;;银在光催化分解NO反应中的光催化行为研究[J];分子催化;2010年03期
17 魏丽芳;郑先君;魏永杰;黄娟;魏明宝;;铂掺杂二氧化钛的制备及光催化乳酸制氢的研究[J];环境化学;2011年05期
18 张前程,张凤宝,张国亮,张晓萍;气相中挥发性有机化合物的光催化降解研究及应用[J];精细石油化工;2002年06期
19 尹忠环;李越湘;彭绍琴;吕功煊;李树本;;污染物乙醇胺Pt/TiO_2光催化制氢[J];分子催化;2007年02期
20 田野;桑换新;王希涛;;P掺杂量对纳米TiO_2结构及其光催化甘油水溶液制氢性能的影响[J];催化学报;2012年08期
中国重要会议论文全文数据库 前10条
1 李旦振;郑宜;付贤智;;微波场助光催化及其应用[A];中国电子学会第七届学术年会论文集[C];2001年
2 殷好勇;金振声;张顺利;张治军;;有机物分子的吸附及光催化分解对水接触角的影响[A];2000'全国光催化学术会议论文集[C];2000年
3 付贤智;;环境光催化基础与应用研究进展[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
4 王崇明;;新时代——吹响了光催化号角[A];第二届全国染整行业技术改造研讨会论文集[C];2004年
5 叶云;王秀丽;冯兆池;李灿;;CdS QDs/Co complex光催化产氢体系的时间分辨光谱研究[A];第十七届全国光散射学术会议摘要文集[C];2013年
6 付贤智;;环境光催化基础与应用研究新进展[A];2004年全国太阳能光化学与光催化学术会议论文集[C];2004年
7 吴季怀;林煜;黄妙良;林建明;黄昀方;殷澍;佐藤次雄;;层状纳米光催化复合材料HNbWO_6/Pt的合成和性质[A];2000'全国光催化学术会议论文集[C];2000年
8 贺攀科;张敏;杨冬梅;董芳;杨建军;;微波-二元醇技术制备Au/TiO_2及其光催化消除臭氧[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年
9 周航月;葛介超;汪鹏飞;;团藻状的Cd_(1-x)Zn_xS纳米球:无模板法制备及其在可见光催化制氢应用[A];第十三届全国光化学学术讨论会论文集[C];2013年
10 李越湘;吕功煊;李树本;;草酸作电子给体光催化分解水制氢[A];2000'全国光催化学术会议论文集[C];2000年
中国重要报纸全文数据库 前2条
1 记者 吴长锋;光催化分解水制氢气展现迷人前景[N];科技日报;2013年
2 蔡维希 蔡忠仁;光催化分解厂房有机污染物项目实施[N];中国化工报;2006年
中国博士学位论文全文数据库 前10条
1 韦丁;硒化铟和钛酸铟纳微结构调控与光催化制氢性能[D];北京理工大学;2015年
2 伍明;氧化银—氧化锌复合物和改性的类石墨氮化碳的光催化性能研究[D];吉林大学;2015年
3 高洪林;无机离子修饰提高g-C_3N_4光催化性能的研究[D];南京大学;2014年
4 于笑潇;分等级纳米复合光催化材料的制备及其光催化性能研究[D];武汉理工大学;2010年
5 陈秀芳;石墨相氮化碳的制备、表征及其光催化性能研究[D];福州大学;2011年
6 郑艳;铋复合氧化物的合成及其可见光光催化性能研究[D];江南大学;2011年
7 刘美英;钽基氮氧化物上可见光光催化分解水制氢研究[D];中国科学院研究生院(大连化学物理研究所);2006年
8 徐新;水滑石基半导体复合材料的制备及其光催化性能研究[D];北京化工大学;2011年
9 于鹤;SrTiO_3光催化材料光吸收边调控及其光催化产氢性能研究[D];南京大学;2013年
10 董龙;铋系/钛基异质材料的制备、表征及其光催化行为研究[D];东北师范大学;2012年
中国硕士学位论文全文数据库 前10条
1 李鑫;新型MoS_2/TiO_2复合材料的合成及光催化性能探究[D];上海师范大学;2015年
2 王隽;钌基光敏剂的合成及其在TiO_2光催化体系中的催化性能研究[D];郑州大学;2015年
3 李云;上转光剂-NaTaO_3-助催化剂体系在光催化水解制氢中的应用及相关影响因素的研究[D];辽宁大学;2015年
4 李宏颖;TiO_2@酵母微球的调控合成及其催化性能研究[D];长安大学;2015年
5 张亚军;微纳枝状结构ZnFe_2O_4的制备与改性及光催化性能研究[D];哈尔滨工业大学;2015年
6 李孜;氮掺杂碳量子点的荧光分析检测及光催化性能研究[D];北京化工大学;2015年
7 张松;二氧化钛光催化制氢的失活机理研究[D];南京大学;2013年
8 刘辉;多孔SrTiO_3纳米晶的制备及其光催化性能研究[D];南京大学;2014年
9 徐鹏;介孔二氧化钛基复合催化剂的制备及其光催化性能研究[D];吉首大学;2015年
10 何静;铋氧化物及其复合物的制备与光催化性能研究[D];重庆大学;2015年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978