收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

大肠杆菌K12 GlcNAc-1-P尿苷转移酶的研究

房俊强  
【摘要】:以寡糖和糖复合物(糖脂、糖蛋白等)形式存在的糖类化合物是发现于所有生命体的重要生物聚合物,它们在众多复杂生物过程中发挥着不可替代的重要作用。糖链结构形式的特定改变与特定的病理状态(如癌症和炎症)机密相关,这显示了糖链在临床诊断中的应用潜力,以及作为药物开发靶点的可能性。 自然界中糖链的生物合成是由糖基转移酶催化进行的,它们将相应的糖核苷酸上特定的单糖转移到一个糖基受体的特定羟基基团上,形成糖苷键的共价连接。由于其在高效合成高度空间特异性和立体化学特异性的糖苷键方面展现出的优势,利用糖基转移酶催化糖链合成已经成为利用有机化学手段合成糖链的有效替代途径。有机合成手段可以为天然化合物提供多样性的衍生物,为药物开发研究提供更多选择性靶点。将生物酶法和化学法结合的化学-酶法合成,是近年来广泛应用于糖生物学研究领域的一个重要手段,有机合成和生物酶法优势互补,成为目前糖生物学和糖化学研究领域的一个充满生机活力的研究方法和手段。 糖核苷酸(nucleotide sugars)亦称为活性糖(active sugars),在化学结构上是单糖的还原端和核苷一磷酸或二磷酸的末端磷酸基团结合形成的化合物。糖核苷酸的生理意义主要包括:1.通过糖核苷酸之间的相互转化,产生一系列糖基转移酶催化反应所必须的活性糖;2.在糖苷和多糖的生物合成过程中,作为糖的供体,是糖单元合成的前体。 UDP-GlcNAc是细胞内的一种重要的氨基糖供体,是细胞内多种细胞分子合成的前体物质。这些细胞内分子主要包括细胞壁肽聚糖、脂多糖、肠杆菌科细菌表面共同抗原、几丁寡糖、GPI锚、糖胺聚糖和糖蛋白等。 生物体内UDP-GlcNAc的合成,都以己糖代谢途径的中间产物果糖-6-磷酸(Fructose-6-P)为起始底物,在多种酶的协同催化作用下,最终合成UDP-GlcNAc。根据合成过程中催化反应的顺序及合成途径所涉及酶的来源不同,分为真核UDP-GlcNAc合成途径和原核UDP-GlcNAc合成途径。两种合成途径的主要区别在于氨基葡萄糖-6-磷酸(GlcN-6-P)的乙酰化和异构化反应的先后顺序不同。真核合成途径中,GlcN-6-P先在乙酰转移酶的作用下,生成乙酰氨基葡萄糖-6-磷酸(GlcNAc-6-P),然后再由异构酶作用,生成乙酰氨基葡萄糖-1-磷酸(GlcNAc-1-P);而原核合成途径中,GlcN-6-P先异构化为氨基葡萄糖-1-磷酸(GlcN-1-P),然后再在乙酰转移酶催化下生成GlcNAc-1-P。 本论文以大肠杆菌K12来源的GlmU为研究对象,对GlmU和GlmU的N-端结构域GlmU-Tr229的底物广泛性进行了系统研究。除了以揭示它们的底物适应性、酶的动力学性质和催化机理为目的的生化研究,本论文还通过体外小量合成反应验证了GlmU在氨基糖核苷酸合成中的潜在应用价值;本论文还就GlmU突变体进行了初步研究,取得了一定的成果。 论文第二章我们克隆了来自Escherichia coli K12的GlcNAc-1-P尿苷转移酶(GlmU),IPTG诱导GlmU蛋白在E coli BL21(DE3)中表达,带有N-端His标签的GlmU蛋白经过Ni-NTA纯化,SDS-PAGE电泳结果显示,GlmU纯度达到90%以上,GlmU单体分子的表观分子量约为50kDa,与理论推导值基本一致。 论文研究了底物GlcNAc-1-P的C2位化学修饰对GlmU催化反应的影响。分别使用了C2位是羟基(Glc),C2位为乙酰氨基(GlcNAc)和C2位为有叠氮基修饰(GlcNAcZ)的三种不同糖-1-磷酸衍生物。实验结果发现,GlmU对三种糖-1-磷酸有不同的催化活性,以UTP为核苷三磷酸供体的反应,使用GlcNAcZ-1-P和Glc-1-P的反应得率分别是以GlcNAc-1-P为底物时反应得率的86%和30%。以前的相关研究表明,GlcNAc-1-P的乙酰氨基与酶分子Thr82和Glu154残基以氢键相互作用。Glc-1-P反应转化率的降低进一步证明了Thr82和Glu154残基在糖-1-磷酸识别中的重要作用。相反,GlcNAcZ-1-P反应转化率没有显著变化的结果表明GlmU能够耐受乙酰氨基上的修饰。 第三章结合E.coli来源的GlmU已有晶体结构,克隆并构建了来自E.coli K12的GlmU的N-端结构域(GlcNAc-1-P尿苷转移酶结构域,GlmU-Tr229),蛋白表达水平为55mg/L。为系统研究GlmU-Tr229对不同核苷三磷酸的底物耐受性,研究中使用了GlcNAc-1-P做催化反应底物,使用了12种不同的核苷三磷酸(NTP),利用毛细管电泳检测NDP-GlcNAc的合成情况。NDP-GlcNAc产率结果显示,GlmU-Tr229对不同核苷三磷酸具有一个底物耐受顺序:UTP>dUTP>dTTP>>CTP>dATP/dm~6ATP,这结果表明GlmU对嘧啶核苷酸的利用程度要优于对嘌呤核苷酸的利用。 GlmU蛋白晶体研究结果已经阐明GlmU N-端催化结构域被两个突出结构包围:第一个突出结构(Asn3-Val111及His216-227),主要参与识别和结合UDP-GlcNAc的核苷部分;第二个突出结构(Glu112-Val215)则主要是与糖核苷酸中的糖结构相互作用有关。尿嘧啶通过尿嘧啶环N3与Gln76之间及4位羰基氧与Gln76、Gly81之间形成的氢键被识别和结合。核苷中的核糖结构,主要是通过核糖2位的OH基团与Gly14之间的氢键作用。我们对GlmU-Tr229的研究结果表明,GlmU N-端催化结构域有非常显著的底物耐受性,对核糖2位的修饰(dUTP)或者是对尿嘧啶环C5修饰(dTTP)都不会显著影响N-端催化结构域的活性。这些结果表明,核糖2位OH与Gly14之间的氢键在底物识别过程中不是必需的。 为验证利用重组GlmU-Tr229合成UDP-GlcNAc衍生物的应用前景,我们在毫克水平上合成了UDP-GlcNAc的两种衍生物:dUDP-GlcNAc和UDP-GlcNAcZ。并使用mono Q离子交换层析和P2分子筛凝胶对糖核苷酸产物进行分离纯化,最终使用ESI-MS和NMR对得到的dUDP-GlcNAc(5.1mg,57.6%)和UDP-GlcNAcZ(4.3mg,44.4%)进行了定性分析。 本论文对GlmU-Tr229生化性质进行了细致的研究,阐述了GlmU-Tr229催化反应需要依赖金属离子做辅助因子,GlmU-Tr229对金属离子的依赖性为:CO~(2+)>Mn~(2+)>Mg~(2+)>>Zn~(2+)/Cu~(2+)/Ni~(2+)>EDTA;在以Mg~(2+)为辅助因子的催化反应体系中,5 mM Mg~(2+)是最适的金属离子浓度,研究了pH对GlmU-Tr229催化活性的影响,GlmU-Tr229最适pH是7.5,pH6.5-8.5范围内都能够催化反应的进行。我们还对催化反应中副产物焦磷酸的反馈抑制作用进行了研究,通过在反应体系中加入焦磷酸水解酶,将反应体系中累积的焦磷酸水解为无机磷酸根,以UTP和GlcNAc-1-P为底物的催化反应,转化率由原来的65%提高到95%。 第四章中,我们利用一种六碳糖激酶(NahK),以ATP和GlcNAc为底物,体外酶促反应合成并分离纯化获得GlcNAc-1-P。探索了一条体外利用NahK合成GlmU反应前体物质GlcNAc-1-P的新途径,解决了GlmU酶学研究底物供给不足的瓶颈。同时,为深入研究GlmU-Tr229底物特异性,我们对GlmU-Tr229的Gln76和Gly81氨基酸位点进行了定点突变研究,并对其中一个突变体Q76E进行了酶学性质的研究。通过毛细管电泳检测发现Q76E的突变引起了GlmU-Tr229对NTP底物利用情况的改变,天然底物UTP利用率大幅降低,而非天然底物CTP的反应转化率达50%以上,这部分工作正在进行中。 总之,本工作提供了一条切实可行的合成UDP-GlcNAc类似物的途径,可以用于乙酰氨基葡萄糖转移酶和细胞内多种细胞组分的合成途径研究。对大肠杆菌K12来源的GlmU和GlmU-Tr229底物广泛性的系统研究有助于我们提高对氨基糖核苷酸合成基础知识的认识。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 吴明轩;白林泉;孟青青;;糖核苷酸类化合物的合成与在生物学研究中的应用[J];现代生物医学进展;2010年14期
2 田余祥,崔秀云;人血管形成因子研究[J];生命的化学;1996年03期
3 毛华伟,赵晓东,杨锡强;脱氧核酶研究进展[J];中国生物工程杂志;2003年04期
4 于乐成,王升启,顾长海,毛青;DNA生物催化功能研究进展[J];中国生物化学与分子生物学报;2002年04期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前8条
1 郑康;景亮;;O-GlcNAc修饰与磷酸化修饰的交叉作用及其对血管反应性的影响[A];第十五次长江流域麻醉学学术年会暨2010年中南六省麻醉学学术年会暨2010年湖北省麻醉学学术年会论文集[C];2010年
2 ;Investigation of Efficient Constructing Gal(1-3)[NeuAc(2-6)]GlcNAc(2-6)Man[A];2011年全国药物化学学术会议——药物的源头创新论文摘要集[C];2011年
3 韦亚东;张国政;牛淼淼;;改造昆虫杆状病毒表达系统N-糖基化修饰途径表达人源化糖蛋白[A];中国蚕学会第六届青年学术研讨会论文集(3)[C];2009年
4 龚俊松;景亮;;谷氨酰胺——热休克反应诱导剂[A];第十五次长江流域麻醉学学术年会暨2010年中南六省麻醉学学术年会暨2010年湖北省麻醉学学术年会论文集[C];2010年
5 Neil Shaw;;Structural Basis and Catalytic Mechanism for the Dual Functional Endo-b-N-Acetylglucosaminidase A[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
6 肖军;邢立静;徐云远;种康;;小麦凝集素VER2参与植物春化响应的分子及表观遗传机制[A];中国植物学会植物细胞生物学2010年学术年会论文摘要汇编[C];2010年
7 王长振;杨俊涛;周宇;丛建波;先宏;郭林超;唐丽;吴可;;LSECtin CRD结构域的运行性研究[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
8 王佳佳;李铁海;郭利娜;刘永辉;杨猛;王鹏;赵炜;;设计与合成OGA抑制剂——PUGNAc类似物[A];2011年全国药物化学学术会议——药物的源头创新论文摘要集[C];2011年
中国博士学位论文全文数据库 前9条
1 房俊强;大肠杆菌K12 GlcNAc-1-P尿苷转移酶的研究[D];山东大学;2009年
2 宓文义;O-GlcNAc糖基化修饰在肿瘤发生与转移过程中的作用及其机制研究[D];中国海洋大学;2011年
3 关婉怡;N-乙酰氨基葡萄糖/半乳糖核苷酸及类似物的酶法合成与应用研究[D];山东大学;2011年
4 李磊;细菌多糖和糖蛋白生物合成途径及相关酶类研究[D];山东大学;2010年
5 刘凤翊;亚洲玉米螟OfHex2的生化性质与生理功能[D];大连理工大学;2013年
6 刘颖;缺血性脑血管病和阿尔茨海默病脑组织中葡萄糖转运蛋白及其作用的研究[D];武汉大学;2011年
7 李祎亮;化学修饰siRNA的设计、合成及其生物活性研究[D];北京协和医学院;2010年
8 王玉峰;海洋半乳寡糖芯片制备及寡糖与凝集素相互作用研究[D];中国海洋大学;2011年
9 康俊华;重组大肠杆菌发酵生产N-乙酰葡萄糖胺及N-乙酰神经氨酸的途径构建及代谢改造[D];山东大学;2012年
中国硕士学位论文全文数据库 前10条
1 颜金科;GlcNAc-BC共聚物的生物合成及其机理探究[D];海南大学;2012年
2 丛琦;蛋白质O-GlcNAc修饰研究的方法探讨[D];中国海洋大学;2012年
3 邓瑞萍;基于人蛋白质组芯片的新O-GlcNAc糖基转移酶相互作用蛋白及底物发现研究[D];上海交通大学;2013年
4 樊琼;O-GlcNAc修饰在结肠癌形成和迁移过程中的作用[D];中国海洋大学;2011年
5 朱清梅;含N-乙酰葡萄糖胺的细菌纤维素共聚物的生物合成[D];海南大学;2010年
6 邹洋;糖核苷酸的酶法合成与唾液酸糖肽的分离制备[D];山东大学;2012年
7 国营;N-糖链新受体的开发及其应用[D];延边大学;2010年
8 刘骏;拟南芥UDP-糖焦磷酸化酶(AtUSP)在糖核苷酸合成中的应用[D];山东大学;2013年
9 汪素芳;新型N-糖链受体的合成及其应用[D];延边大学;2011年
10 詹泰岚;一个粘脂贮积症Ⅲ型家系的分子遗传学研究[D];华中科技大学;2009年
中国重要报纸全文数据库 前1条
1 余海若;分子生物学时代[N];大众科技报;2000年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978