收藏本站
《中国海洋大学》 2010年
收藏 | 手机打开
二维码
手机客户端打开本文

PEDOT:PSS薄膜的掺杂改性及其在有机太阳能电池中的应用研究

李蛟  
【摘要】: 目前困扰有机太阳能电池发展的主要问题是器件效率偏低,如何提高它的能量转换效率是其能否商业化和与传统无机光伏电池竞争的关键。本文围绕有机太阳能电池阳极修饰层聚3,4-乙撑二氧噻吩:聚(对苯乙烯磺酸)根阴离子(PEDOT:PSS)薄膜的掺杂改性及其在有机太阳能电池中的应用研究开展了相关工作,主要内容与结论如下: 1.采用共混-旋涂法在石英玻片上分别制备出经多壁碳纳米管(MWCNTs)、山梨醇、溴三种掺杂剂掺杂的PEDOT:PSS透明导电膜,研究了不同掺杂剂的加入对薄膜透光性能与导电性能的影响。 ①在550nm~850nm波段,多壁碳纳米管掺杂使PEDOT:PSS薄膜透光性能有所降低,山梨醇与溴掺杂则有利于PEDOT:PSS薄膜透光性能的提高。 ②多壁碳纳米管、山梨醇、溴掺杂均可提高PEDOT:PSS薄膜的导电性能。其中,8wt%山梨醇掺杂可以使PEDOT:PSS薄膜的导电能力提高400多倍。6wt%溴掺杂可以使PEDOT:PSS薄膜的导电能力提高近300倍。0.20wt%多壁碳纳米管掺杂可以使PEDOT:PSS薄膜的导电能力提高约40倍。 2.根据X射线衍射(XRD),扫描电镜(SEM),原子力显微镜(AFM),X射线光电子能谱(XPS)等检测结果,详细研究了多壁碳纳米管、山梨醇、溴三种掺杂剂的加入与PEDOT:PSS薄膜导电性能变化之间的内在联系。 ①多壁碳纳米管掺杂PEDOT:PSS薄膜的导电机理可以概括为二种效应,一是“共轭效应”,二是碳管“网络效应”。在多壁碳纳米管微量掺杂阶段(0.04wt%),碳管在薄膜中零星分布,相互之间少有接触,此时,多壁碳纳米管会与PEDOT主链中五元噻吩环发生π-π共轭作用,引起二者之间电子云密度的变化,从而增加了PEDOT主链载流子的离域化程度,有利于薄膜导电性能的提高。当多壁碳纳米管掺杂含量达到0.10wt%时,多壁碳纳米管在薄膜内部形成网络结构,新导电通道形成,有效提高薄膜导电性能。掺杂量超过0.20wt%时,由于碳管相互接触电阻增大,薄膜导电性能开始下降。 ②山梨醇掺杂PEDOT:PSS薄膜导电机理:山梨醇的加入致使PEDOT主链结构发生发生苯-醌变化。苯式结构的PEDOT分子以无规线团形卷曲状存在,而醌式结构的PEDOT分子表现为伸展形卷曲状或直线状。相比较而言,伸展形卷曲状或直线状链形态中局部有序结构大幅增加,有利于载流子在PEDOT链中的迁移,从而表现为PEDOT:PSS薄膜电导率增加。 ③溴掺杂PEDOT:PSS薄膜导电机理:溴加入PEDOT:PSS水溶液中,会与水反应生成具有弱氧化性的氢溴酸;同时,溴在水中饱合时,还存在具有弱氧化性的溴分子。二种弱氧化物的存在,对于PEDOT:PSS薄膜会产生二种作用:一是释放更多的电子,使PEDOT主链上空穴载流子浓度增加,增加薄膜导电性能;二是由于其氧化性的存在,对PEDOT的主链结构会有所破坏,降低薄膜导电性能。当第一种效应大于第二效应时,薄膜的导电性能表现为增加;而当第二种效应大于第一种效应时,薄膜的导电性能表现为下降。 3.以聚(3-己基噻吩)与1-(3-甲氧基羧基)-丙基-1-苯基-(6,6)C61共混物为光电活性层,制备了器件结构不同的有机太阳能电池,分别考察了经多壁碳纳米管、山梨醇、溴掺杂处理后的PEDOT:PSS薄膜对器件光伏性能与稳定性能的影响。 ①多壁碳纳米管与山梨醇的掺杂,增加了器件中的漏电流,降低了器件的并联电阻,不利于器件效率的改善。溴掺杂对器件漏电流与并联电阻未有明显影响。 ②多壁碳纳米管、山梨醇、溴掺杂均可降低器件串联电阻,提高光电池能量转换效率。6wt%溴掺杂条件下,器件开路电压为0.60V,短路电流为10.31mA/cm2,FF为51.1,能量转换效率为3.16%,较未掺杂器件效率提高了约49%。8wt%山梨醇掺杂条件下,器件开路电压为0.53V,短路电流为11.27 mA/cm2,FF为49.1,能量转换效率为2.93%,较未掺杂器件效率提高了约38.2%。0.04wt%多壁碳纳米管掺杂条件下,器件开路电压为0.55V,短路电流为9.52 mA/cm2,FF为44.8,能量转换效率为2.35%,较未掺杂器件效率提高了约13%。 ③器件稳定性能实验显示:多壁碳纳米管(0.04wt%)与山梨醇(8wt%)掺杂对置于手套箱(高纯氩气;水、氧含量1ppm;室温)中器件的稳定性能未有影响(20天);相同实验环境中,溴(6wt%)掺杂则使器件效率在12天上开始下降。
【学位授予单位】:

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978