微波熔盐法合成ZrB_2/HfB_2-SiC复合粉体及其放电等离子体烧结
【摘要】:ZrB_2-SiC(Z-S)复相陶瓷具有高熔点、高硬度、高的导电导热能力、良好的抗侵蚀能力和抗氧化性能,因而被广泛应用于火箭推进器、超音速飞行器等超高温领域。目前制备Z-S复相陶瓷的方法是将Z-S复合粉体在高温、高压条件下进行烧结制得的。微波/熔盐辅助硼热/碳热还原法合成Z-S复合粉体具有合成反应温度低、保温时间短、所得复合粉体的纯度高且具有各向异性结构,有利于材料增韧等优点。另一方面,放电等离子体烧结(SPS)可以制备高致密度、力学性能优异的Z-S复合陶瓷。基于此,本论文通过微波/熔盐辅助硼热/碳热还原法合成了Z-S复合粉体,研究了反应温度、保温时间以及各原料用量对复合粉体合成过程的影响,并通过放电等离子体烧结制备了Z-S复相陶瓷。研究表明:(1)以ZrO_2、SiO_2、活性炭以及B_4C为原料,以NaCl-KCl为熔盐介质,采用微波/熔盐辅助硼热/碳热还原法,在原料配比为n(ZrO_2/SiO_2/B_4C/C)=1.00:0.37:0.80:2.61,熔盐介质与反应物的质量比为2.0且反应温度为1200°C/20 min的条件下合成了Z-S复合粉体。相较传统热还原法,本方法所需反应温度降低了约200°C,保温时间从数小时缩短至20 min。产物中ZrB_2颗粒具有棒状单晶结构,其长度和直径分别为数十微米和数微米,长径比约为10。产物中SiC颗粒为六方片状单晶结构,其长度和厚度分别处于亚微米级和纳米级。熔盐介质和微波加热的共同作用不仅极大地加速了Z-S在低温下的合成反应,而且还促进了其取向生长生成具有各向异性结构的单晶。(2)以ZrSiO_4、活性炭以及B_4C为原料,以NaCl-KCl为熔盐介反应质,采用微波/熔盐辅助硼热/碳热还原法,在原料配比为n(ZrSiO_4/C)=1.0/4.5、B_4C过量60 mol%、熔盐介质与反应物的质量比为2.0及反应温度为1200°C/20 min的条件下合成了Z-S复合粉体。微波加热和熔盐介质促进了ZrB_2晶体通过“自编织模式”外延生长,生成具有各向异性结构的单晶六方片状颗粒。其生长过程如下:首先,通过热还原法合成具有棒状结构的ZrB_2;然后棒状ZrB_2相互编织成空间网络状结构;最后,网络状结构的空隙被随后生成的ZrB_2逐渐填补,生成片状ZrB_2,六方片状的ZrB_2颗粒的长度和厚度分别处于微米级和纳米级。(3)以HfO_2粉、SiO_2粉、活性炭粉以及B_4C粉为原料,以NaCl-KCl为熔盐介质,采用微波/熔盐辅助硼热/碳热还原法,在原料配比为n(HfO_2/SiO_2/B_4C/C)=1.00:0.37:0.80:2.61、熔盐介质与反应物的质量比为2.0以及反应温度为1250°C/20 min的条件下合成了HfB_2-SiC复合粉体。产物中HfB_2为单晶纳米棒状结构,且分散均匀,其长度和直径分别为数微米和数百纳米,长径比为5-10。产物中SiC呈不规则形貌,均匀分散于HfB_2的周围。(4)以1200°C/20 min的条件下,ZrO_2、SiO_2、活性炭以及B_4C为原料,采用微波/熔盐辅助硼热/碳热还原法合成的Z-S复合粉体为原料,采用放电等离子体烧结(SPS)在2000 ~oC/15 min/100 MPa的条件下制备了Z-S复相陶瓷。所制备Z-S复相陶瓷的致密度达99.2%,其维氏硬度和断裂韧性分别为24.5 GPa和4.8 MPa·m~(1/2)。SEM结果表明起始Z-S复合粉体中的棒状结构经SPS烧结后依旧存在,其存在对烧结产物力学性能的提高具有显著的促进作用,诱发了裂纹偏转和桥接等多种增韧机制。Z-S复相陶瓷抛光刻蚀后的SEM结果表明,复相陶瓷中存在着大量棒状ZrB_2,其平均长径比高达5.3。