收藏本站
《中南大学》 2008年
收藏 | 手机打开
二维码
手机客户端打开本文

基于微粒群算法的数字图像处理方法研究

周鲜成  
【摘要】: 随着数字图像处理技术在军事、医学、遥感、工业生产等领域越来越广泛的应用,图像信息呈现出复杂性和多样性特征,普遍存在着图像信息处理的不完整性、不确定性以及建模困难等问题。因此,智能优化算法在图像处理领域得到了广泛应用,并在某些方面取得了比传统方法更好的效果。近年来,将微粒群算法应用于图像处理领域的研究已取得一定成绩,但在图像分割、图像增强和图像复原等方面仍存在值得进一步深入研究探讨的问题。 本文在研究微粒群算法基本理论的基础上,提出了微粒群算法的改进形式,并将微粒群算法和模糊理论、模拟退火算法结合应用于图像处理领域,研究基于微粒群算法的图像模糊阈值分割、图像聚类分割、图像增强和图像复原方法。主要研究工作包括以下几个方面。 1.研究了基于微粒群算法的多峰函数寻优问题,提出一种基于峰谷函数的小生镜微粒群算法。算法通过峰谷函数判断小生境子微粒群的生成和合并,产生新的小生境微粒群。该算法克服了初始化参数选取依赖于求解问题先验知识、算法收敛速度慢等缺陷,提高了小生境微粒群算法的多峰函数寻优能力,避免了计算资源的浪费,使算法的寻优效率和收敛速度均有明显改善。 2.提出了基于微粒群算法的最大模糊熵阈值分割算法。该算法利用微粒群算法的全局优化能力,依据最大模糊熵原理,搜索模糊参数的最优组合,自适应地确定分割阈值,能应用于单目标、多目标以及信噪比较低图像的分割,具有较强的适应性和较好的图像分割效果,并能大大降低计算的复杂度。 3.提出了基于微粒群算法的图像模糊聚类分割算法。根据不同的应用对象,对传统FCM算法的目标函数进行修改,设计了不同的适应度函数,利用捕食者-食饵微粒群算法寻找最优聚类中心,能应用于普通图像、噪声污染图像和彩色图像的分割。提出的算法能克服模糊C均值聚类算法对初始聚类中心敏感易陷入局部最优的不足,提高FCM算法的计算速度。特别是当应用于噪声图像分割时,提出的算法由于既考虑了图像所具有的模糊性,又利用了图像的空间信息,对噪声不敏感,具有抗噪性能好、鲁棒性强等特点。 4.提出了基于微粒群算法的图像增强算法。该算法利用Tubbs提出的规则化Beta函数拟合对比度变换曲线,自动寻找Beta函数的最优参数,实现灰度图像对比度的自适应变换;针对彩色图像滤波,通过自适应地获得滤波器窗口的最优权值,体现滤波器窗口内像素之间的空间距离对滤波效果的影响,实现彩色图像脉冲噪声的自适应滤波,其性能明显优于现有的彩色图像滤波方法。 5.提出了基于微粒群和模拟退火算法的图像复原算法。该算法利用微粒群算法的快速搜索能力和模拟退火算法良好的全局收敛性能寻找最佳复原图像,克服了传统的图像复原方法存在较多约束条件、依赖先验知识、计算求解复杂和对噪声十分敏感等不足,能应用于不同类型退化图像的复原,并能有效地解决经典维纳滤波算法噪信功率比难以确定的问题。 最后,对论文进行了总结,并提出了一些有待于今后进一步研究的问题。
【学位授予单位】:

知网文化
【相似文献】
中国期刊全文数据库 前20条
1 曾建潮;王丽芳;;一种广义微粒群算法模型[J];模式识别与人工智能;2005年06期
2 熊鹰;周树民;祁辉;;一种新型的求解约束优化问题的微粒群算法[J];广东广播电视大学学报;2006年03期
3 曾祥光;张玲玲;;基于微粒群算法优化PID参数研究[J];机械设计与制造;2007年04期
4 王元元;曾建潮;谭瑛;;基于BSP并行计算模型的并行微粒群算法[J];计算机应用与软件;2008年08期
5 李波;张流洋;张黎明;;微粒群算法思想下蚁群算法的改进及在CTSP中的仿真实现[J];平顶山学院学报;2010年02期
6 彭喜元,彭宇,戴毓丰;群智能理论及应用[J];电子学报;2003年S1期
7 张更新,赵辉,王红君,苏君临;基于动态参数的微粒群算法(PSO)的研究[J];天津理工大学学报;2005年04期
8 张晓清,张建科,方敏;多峰搜索的动态微粒群算法[J];计算机应用;2005年11期
9 马铭;周春光;张利彪;马捷;;一种优化模糊神经网络的多目标微粒群算法[J];计算机研究与发展;2006年12期
10 姚坤;李菲菲;刘希玉;;一种基于PSO和GA的混合算法[J];计算机工程与应用;2007年06期
11 刘晓峰;陈通;;PSO算法的收敛性及参数选择研究[J];计算机工程与应用;2007年09期
12 王万良;唐宇;;微粒群算法的研究现状与展望[J];浙江工业大学学报;2007年02期
13 鲁兵;;微粒群算法研究状况和发展[J];商场现代化;2007年12期
14 吴晓威;张井岗;;基于微粒群算法的灰色预测PID控制器[J];智能系统学报;2007年05期
15 许允喜;陈方;;基于混合微粒群算法的说话人识别[J];计算机应用;2008年06期
16 魏占海;刘松林;黄海明;;基于微粒群算法的舰船维修保障系统优化研究[J];舰船电子工程;2008年08期
17 袁代林;程世娟;陈虬;;一种新形式的微粒群算法[J];计算机工程与应用;2008年33期
18 周蕾;;群智能在农业生产等方面的应用研究综述[J];农业网络信息;2008年11期
19 李剑;刘志明;;求解TSP问题的混合遗传微粒群算法[J];计算机与数字工程;2009年05期
20 张洪业;金刚;王宇新;;微粒群算法在印染企业车间调度中的研究应用[J];计算机工程与应用;2009年21期
中国重要会议论文全文数据库 前10条
1 崔志华;蔡星娟;曾建潮;孙国基;;基于预测速度的改进微粒群算法[A];第二十六届中国控制会议论文集[C];2007年
2 蔡星娟;崔志华;曾建潮;谭瑛;;自适应PID控制微粒群算法[A];第二十六届中国控制会议论文集[C];2007年
3 王珩;张景瑞;;基于微粒群算法的航天器大角度姿态快速机动控制器参数优化设计[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 张昕;彭宏;郑启伦;;基于微粒群算法的聚类分析[A];2006年全国开放式分布与并行计算学术会议论文集(一)[C];2006年
5 王元元;曾建潮;谭瑛;;基于并行计算模型的并行微粒群算法的性能分析[A];2007年全国开放式分布与并行计算机学术会议论文集(上册)[C];2007年
6 宋佳栋;赵庆祯;刘衍民;;农产品风险控制的一种决策方法[A];海峡两岸农业学术研讨论文集[C];2010年
7 裴振奎;刘健;华夏;;求解随机车辆路径规划问题的混合微粒群算法[A];2008通信理论与技术新进展——第十三届全国青年通信学术会议论文集(上)[C];2008年
8 卢志刚;李伟;冀尔康;吴士昌;;微粒群算法优化设计自适应滤波器[A];第七届青年学术会议论文集[C];2005年
9 王海稳;张井岗;戴跃伟;曲俊海;;基于微粒群算法的PI/PD型二自由度PID控制器的优化设计[A];2009年中国智能自动化会议论文集(第一分册)[C];2009年
10 马铭;孟庆锴;张利彪;;基于模糊系统优化的软测量建模[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年
中国博士学位论文全文数据库 前10条
1 袁代林;改进的微粒群算法及其在结构拓扑优化中的应用[D];西南交通大学;2009年
2 崔志华;微粒群算法的性能分析与优化[D];西安交通大学;2008年
3 仇晨晔;多目标微粒群算法研究及其在交通事故分析中的应用[D];北京邮电大学;2013年
4 莫思敏;基于群体交互自组织种群结构的扩展微粒群算法研究[D];兰州理工大学;2012年
5 周鲜成;基于微粒群算法的数字图像处理方法研究[D];中南大学;2008年
6 薛明志;进化计算与小波分析若干问题研究[D];西安电子科技大学;2004年
7 刘晓东;高温微粒红外辐射特性测量技术研究[D];哈尔滨工业大学;2008年
8 李剑;微粒群算法及其在物流系统中的应用研究[D];华中科技大学;2008年
9 王俊年;微粒群算法及其在锌电解整流供电系统优化中的应用研究[D];中南大学;2006年
10 宋存利;生产调度问题及其智能优化算法研究[D];大连理工大学;2011年
中国硕士学位论文全文数据库 前10条
1 吕洪光;基于微粒群算法的装配序列规划方法及其应用研究[D];电子科技大学;2010年
2 朱家静;基于遗传微粒群算法的组卷策略应用研究[D];大连海事大学;2011年
3 魏欣;基于智能优化技术的创新概念设计研究与应用[D];山东师范大学;2010年
4 王晓敏;基于微粒群算法的关联规则挖掘方法及应用[D];山东师范大学;2010年
5 陈红洲;群体智能若干算法研究[D];哈尔滨工程大学;2004年
6 戴芬;基于量子计算技术的智能算法的研究与应用[D];山东师范大学;2010年
7 刘丁峰;基于改进微粒群算法的图像复原方法研究[D];中南民族大学;2010年
8 林令娟;模拟退火微粒群混合算法的研究及应用[D];山东师范大学;2010年
9 李凯;基于微粒群优化算法的结构系统识别[D];同济大学;2008年
10 王俊艳;微粒群算法在分类问题中的应用研究[D];太原科技大学;2008年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978