收藏本站
《广西师范大学》 2019年
收藏 | 手机打开
二维码
手机客户端打开本文

基于集成卷积神经网络的年龄估计研究

冯燕燕  
【摘要】:目前人脸识别技术已经趋于成熟,在许多领域广泛应用。与人脸识别技术相比,人脸的年龄估计相关技术相对还不成熟,有关于对人脸年龄估计的社会需求却越来越大。人脸图像是一种生物特征,通过识别生物特征去识别个体。然而,由于人类个体生活习惯、工作环境、先天基因及其他因素的差异性,相同年龄的个体在年龄特征的外在表现出巨大差异,因而年龄估计的研究发展仍然面临着巨大的挑战。传统算法采用手工的方式提取人脸年龄特征,过程繁琐复杂且只能提取浅层特征。卷积神经网络是一种常用的深度学习算法,直接将图像作为网络的输入,通过逐层的运算与反向传播自动提取具有判别力的图像深层次特征。为避免传统算法的过度预处理与手动选择特征的复杂过程,且更充分的提取了图像特征,本文结合卷积神经网络的图像处理方式进行人脸年龄估计基分类器的研究。目前用于年龄估计的分类器一般都是单独进行,分类器之间缺少信息交流,本文依据整体大于部分的思想,沿着集成学习的脉络展开人脸年龄估计的研究,首先进行人脸数字图像的采集与预处理;然后通过两个不同的卷积神经网络提取人脸年龄特征并生成多个不同的基分类器;其次,通过集成算法将多个基分类器进行结合,使得不同的基分类器之间信息得到交流;最后,将集成分类器用于年龄估计。主要研究内容如下:(1)图像预处理为增加数据集对网络的泛化能力,我们通过多角度裁剪、镜像对数据集进行了十倍的数据扩增。另外,在数据集中,由于人脸图像存在光照强度不等、头部姿势多样等因素直接影响网络的泛化能力,为减弱因环境变化带来的影响,本课题在网络训练之前将数据集的图像进行直方图均衡化处理。(2)人脸图像年龄特征提取研究通过双通道多卷积核卷积神经网络GONET和基于1×1卷积、通道混洗和稀疏连接的微型化卷积神经网络FYNET提取人脸图像年龄的特征,在FGNET数据集和CACD2000数据集上训练以获得基分类器。GONET网络旨在提高网络的精度,减少参数防止过拟合。在AlexNet模型的基础上,不改变网络卷积层的输入输出,利用1×3卷积、3×1卷积与3×3卷积之间的等效性,增加网络的深度与非线性,使得网络对图像特征表达能力增强,利用模块化与全局池化策略得到GONET网络。实验结果证明GONET网络识别效果显著,在提高识别精度的同时可大量减少网络参数。FYNET网络旨在保持网络的精度和微型化设计,通过通道混洗,将不同通道间的特征信息进行交换,更好的融合层与层之间的信息,提升网络对年龄特征的拟合能力,同时1×1卷积和稀疏连接可极大地减少网络的参数。实验结果证明FYNET网络在保证年龄估计正确率的前提下,可实现网络模型的微型化。(3)年龄估计集成算法研究为加强单一分类器间的信息交流,在基分类器之间分别使用最大概率的投票法、全局概率的加权平均法和最大概率的加权平均法三种集成策略。基分类器由GONET和FYNET生成。最大概率的投票法是通过统计所有基分类器的结果得到集成输出;全局概率的加权平均法和最大概率的加权平均法是通过将基分类器的输出作为算法的输入,并赋予每个基分类器一定的权重,最后按照加权平均法得到集成输出;全局概率的加权平均法权重更新方式是基于基分类器的所有类别输出概率;最大概率的加权平均法权重更新方式则是基于基分类器的单一类别的最大概率。在年龄数据集FGNET和CACD2000上进行实验,实验结果证明了集成分类器能综合单一基分类器的优点,获得比单一基分类器更好的年龄估计效果。
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2019
【分类号】:TP183;TP391.41

【相似文献】
中国期刊全文数据库 前10条
1 胡悦;;金融市场中的神经网络拐点预测法[J];金融经济;2017年18期
2 陈晓燕;;浅析简单神经网络的发展及简单模型[J];数字技术与应用;2019年05期
3 迟惠生;陈珂;;1995年世界神经网络大会述评[J];国际学术动态;1996年01期
4 吴立可;;脉冲神经网络和行为识别[J];通讯世界;2018年12期
5 林嘉应;郑柏伦;刘捷;;基于卷积神经网络的船舶分类模型[J];信息技术与信息化;2019年02期
6 俞颂华;;卷积神经网络的发展与应用综述[J];信息通信;2019年02期
7 韩真;凯文·哈特尼特;;为神经网络的通用理论建造基石[J];世界科学;2019年04期
8 鲍伟强;陈娟;熊涛;;基于进化神经网络的短期电力负荷预测研究[J];电工技术;2019年11期
9 王丽华;杨秀萍;王皓;高峥翔;;智能双轮平衡车的设计研究[J];数字技术与应用;2018年04期
10 张庭略;;基于硬件的神经网络加速[J];通讯世界;2018年08期
中国重要会议论文全文数据库 前10条
1 孙军田;张喆;;基于神经网络数据挖掘技术确定灾害等级的灭火救援出动力量模型研究[A];2016中国消防协会科学技术年会论文集[C];2016年
2 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
3 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
4 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
5 李涛;费树岷;;具有变时滞Cohen-Grossberg神经网络的指数稳定性准则[A];第二十六届中国控制会议论文集[C];2007年
6 汪灵枝;秦发金;;具有变时滞和脉冲的离散Cohen-Grossberg神经网络的周期解[A];中国自动化学会控制理论专业委员会D卷[C];2011年
7 韩正之;林家骏;;用神经网络求解非线性相容方程[A];1993年控制理论及其应用年会论文集[C];1993年
8 林家骏;王赞基;;求解不可微优化问题的连续极大熵神经网络[A];1998年中国智能自动化学术会议论文集(上册)[C];1998年
9 姜德宏;徐德民;任章;;基于神经网络的自校正控制器[A];1993中国控制与决策学术年会论文集[C];1993年
10 窦永丰;贝超;;模糊与神经网络结合方式及在控制中的应用[A];1997年中国控制会议论文集[C];1997年
中国重要报纸全文数据库 前10条
1 张允硕 姜正义 甄海锋 河南理工大学;基于神经网络的自适应PID控制的智能衣架[N];科学导报;2019年
2 记者 刘霞;忆阻器制成神经网络更高效[N];科技日报;2017年
3 整理 本报记者 诸玲珍 顾鸿儒;微软神经网络切割法可使加速作用超线性[N];中国电子报;2018年
4 ;神经网络小史[N];电子报;2018年
5 张敏;人机大战,到底谁会赢?[N];北京日报;2017年
6 ;人工智能将取得大面积突破[N];中国企业报;2017年
7 本报记者 龚丹韵;人机大战:人类还有优势吗[N];解放日报;2017年
8 ;人类正迎来云端机器人时代[N];中国企业报;2017年
9 张斌;谁还需要“同传”[N];文汇报;2017年
10 邓洲 中国社会科学院工业经济研究所;深度学习:人工智能进入应用阶段[N];上海证券报;2017年
中国博士学位论文全文数据库 前10条
1 陈冬冬;基于深度神经网络的视觉媒体风格转换方法研究[D];中国科学技术大学;2019年
2 韩旭;基于神经网络的文本特征表示关键技术研究[D];北京邮电大学;2019年
3 杨国花;基于级联神经网络的对话状态追踪技术研究与实现[D];北京邮电大学;2019年
4 杨威;基于卷积神经网络的高效语义分割方法研究[D];中国科学院大学(中国科学院光电技术研究所);2019年
5 雷学文;基于深度神经网络的风功率日前预测与电力系统联合调度研究[D];西安理工大学;2018年
6 陈川;忆阻神经网络的同步控制及在信息安全中的应用研究[D];北京邮电大学;2019年
7 姜春晖;深度神经网络剪枝方法研究[D];中国科学技术大学;2019年
8 昌杰;基于深度神经网络的肿瘤图像分析与处理[D];中国科学技术大学;2019年
9 宫磊;可重构平台上面向卷积神经网络的异构多核加速方法研究[D];中国科学技术大学;2019年
10 丁鹏;基于深度卷积神经网络的光学遥感目标检测技术研究[D];中国科学院大学(中国科学院长春光学精密机械与物理研究所);2019年
中国硕士学位论文全文数据库 前10条
1 权峻;太阳能温室建模及智能控制策略研究[D];天津理工大学;2019年
2 钟文雅;基于深度卷积神经网络的乳腺X线图像的分类方法研究[D];南阳师范学院;2019年
3 薛花;基于聚类与神经网络的协同过滤推荐系统关键技术的研究[D];天津理工大学;2019年
4 张璐;基于深度学习的淋巴结自动分割算法研究[D];浙江大学;2019年
5 郭盼盼;基于GA-BP神经网络的多日股票价格预测[D];郑州大学;2019年
6 王旭东;基于光散射的磷矿磨矿粒度分析方法研究[D];武汉工程大学;2018年
7 熊雨点;基于深度学习的表单识别系统的研究与实现[D];武汉工程大学;2018年
8 聂若莹;基于AMDAR数据的对流云附近颠簸区预测方法研究[D];中国民用航空飞行学院;2019年
9 李高玲;基于神经网络的算法作曲与情感识别研究[D];郑州大学;2019年
10 路高飞;基于遗传算法改进BP神经网络的信用风险研究[D];郑州大学;2019年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026