收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

基于智能蚂蚁算法优化的脱硫静态模型研究

王雅娣  
【摘要】:随着最近几年经济的突飞猛进,国内外钢铁市场对钢的质量尤其是纯净钢的质量要求越来越高、越来越苛刻。但是硫的存在却给这带来了很大的难度,因此以质量取胜的钢铁企业纷纷把如何降低钢材中的硫含量、提高钢材质量和开发新品种视为钢铁生产的一个核心战略任务,以增强企业的市场竞争力。 然而目前广泛应用的铁水预脱硫主要采用人工控制,这导致对生产过程的判断和操作调剂的主观性很大,难以保证脱硫操作的稳定性,导致钢产品质量波动大,脱硫成本增加。本文以大型钢铁生产基地攀钢集团为背景,采用神经网络来建立脱硫静态模型,自动寻找脱硫过程的规律和知识,从而对脱硫过程进行决策支持,降低脱硫成本,为全自动脱硫创造了良好的条件。 本文采用RBF神经网络作为建模工具。针对建模过程中出现的RBF中心和宽度难以确定的难点,在分析蚂蚁算法机理的基础上,提出了使用智能蚂蚁算法对RBF神经网络模型的中心和宽度进行自适应选择,从而达到模型训练精度和范化能力的一个最优的平衡,从而提高模型的预报精度。 文中首先详细介绍了基本蚂蚁算法的思想和特点,然后在分析其发展现状和局限性的基础上,采众家之长,决定采用智能蚂蚁算法来优化RBF神经网络的中心和宽度。文中针对基本蚂蚁算法容易出现停滞、参数难以确定的局限性,对其进行了一定的改进——智能蚂蚁算法:(1)引入蚁群优化算法中对转移概率公式、信息素更新规则的修改;(2)引入Max-Min蚂蚁算法中对轨迹强度τ_(ij)设置上下限τ_(max)和τ_(min);(3)在蚂蚁算法中加入局部优化,从而进一步缩短解路线的长度,以加快蚂蚁算法的收敛速度;(4)对参数进行了一定的选择。最后通过程序仿真证明了智能蚂蚁算法与基本蚂蚁算法相比具有明显的优越性。 本文在分析脱硫工艺原理的基础上,通过有效的数据预处理,最后进行仿真分析,基于智能蚂蚁算法优化的脱硫静态模型与传统的RBF神经网络脱硫静态模型相比较,其模型的预报精度好于传统脱硫静态模型,具有一定的实用性和推广性。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 张小广;李绍军;刘漫丹;;混合蚁群算法及其用于有机物毒性的QSAR研究[J];计算机与应用化学;2009年05期
2 张小广;李绍军;刘漫丹;;混合蚁群算法及其在裂解深度建模中的应用[J];化工自动化及仪表;2008年06期
3 舒服华;王志辉;;基于蚁群神经网络的电阻点焊工艺参数优化[J];焊接;2007年02期
4 杨景明;孙晓娜;车海军;刘畅;;基于蚁群算法的神经网络冷连轧机轧制力预报[J];钢铁;2009年03期
5 舒服华;赵星魁;;基于蚁群神经网络的耐热钢管热处理工艺优化[J];金属热处理;2008年03期
6 王建国;张昊宇;明学星;李益国;吕震中;;基于蚁群算法优化的再热汽温系统变参数预测PI30D控制[J];化工自动化及仪表;2008年03期
7 吴德明;储藏物昆虫信息素的应用研究[J];四川粮油科技;2001年02期
8 高菊芳;生物农药的作用、应用与功效(二)——植物和动物源农药[J];世界农药;2001年02期
9 朱立军;杨中秋;;一种引入信息素上下界自适应机制的蚁群算法[J];沈阳化工学院学报;2009年01期
10 牟建华,周伟,万百五;组合多重神经网络动态系统鲁棒故障检测与诊断[J];西安石油学院学报(自然科学版);1997年01期
11 郭前岗,孙瑜;一种新型神经网络结构的PID控制器及其仿真研究[J];西北轻工业学院学报;1998年03期
12 冯静,王玉,陈中中;浅谈用神经网络预测摩擦焊接头性能[J];大众科技;2005年08期
13 王艳春;王新;;基于神经网络求解TSP问题的研究[J];齐齐哈尔大学学报;2006年01期
14 易祖坤;蒋海;杨亚东;;人工神经网络复合压裂选井选层中的应用[J];西部探矿工程;2007年09期
15 夏文智;李刚进;朱丽;章中林;;工业火灾报警控制器的可靠实现[J];消防科学与技术;2008年03期
16 郑孝东;程根银;顾涛;胡兴志;李永;封孝辉;黄文华;;基于模糊-神经网络的局部通风机变频调速系统设计[J];煤炭工程;2010年04期
17 朱海东;雷英成;屈勇;;基于神经网络的多属性分析在地震图像共同区域划分中的应用[J];长江大学学报(自然科学版);2011年06期
18 陆安邦;储藏物害虫信息素和引诱剂[J];郑州工程学院学报;1987年03期
19 郑晓雯,林南英;神经网络在机械系统故障诊断中的应用[J];西安科技学院学报;1994年02期
20 杨尚宝,杨天钧,董一诚;铁水含硅量预报神经网络模型[J];北京科技大学学报;1995年06期
中国重要会议论文全文数据库 前10条
1 金飞虎;洪炳熔;高庆吉;;基于蚁群神经网络的机器人逆运动学研究[A];2003中国控制与决策学术年会论文集[C];2003年
2 侯艳芳;冯红梅;;基于神经网络的调制识别算法的研究[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
3 沈建荣;杨林泉;陈琳;;神经网络的稳定性判据与区域经济结构调整[A];系统工程与可持续发展战略——中国系统工程学会第十届年会论文集[C];1998年
4 石山铭;李富兰;丁俊丽;;神经网络的知识获取[A];全国青年管理科学与系统科学论文集(第1卷)[C];1991年
5 吴清烈;徐南荣;;基于神经网络的一种多目标决策方法[A];复杂巨系统理论·方法·应用——中国系统工程学会第八届学术年会论文集[C];1994年
6 李晓钟;汪培庄;罗承忠;;神经网络与模糊逻辑[A];中国系统工程学会模糊数学与模糊系统委员会第五届年会论文选集[C];1990年
7 房育栋;余英林;;高阶自组织映射及其学习算法[A];1995年中国控制会议论文集(上)[C];1995年
8 王晓晔;杜朝辉;吕德忠;刘建峰;;神经网络模糊控制在温度控制系统中的应用[A];1997中国控制与决策学术年会论文集[C];1997年
9 金龙;吴建生;;基于遗传算法的神经网络短期气候预测模型(摘要)[A];新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“气候系统与气候变化”分会论文集[C];2003年
10 申伟;张元培;;基于MATLAB的自适应神经网络模糊系统(ANFIS)的应用[A];《制造业自动化与网络化制造》学术交流会论文集[C];2004年
中国博士学位论文全文数据库 前10条
1 刘志祥;深部开采高阶段尾砂充填体力学与非线性优化设计[D];中南大学;2005年
2 戴雪龙;PET探测器神经网络定位方法研究[D];中国科学技术大学;2006年
3 马戎;智能控制技术在炼钢电弧炉中的应用研究[D];西北工业大学;2006年
4 文敦伟;面向多智能体和神经网络的智能控制研究[D];中南大学;2001年
5 吴大宏;基于遗传算法与神经网络的桥梁结构健康监测系统研究[D];西南交通大学;2003年
6 杜文斌;基于神经网络的冠心病证候诊断标准与药效评价模型研究[D];辽宁中医学院;2004年
7 熊雪梅;参数化模糊遗传神经网络及在植物病害预测的应用[D];南京农业大学;2004年
8 李智;电站锅炉燃烧系统优化运行与应用研究[D];东北大学;2005年
9 王承;基于神经网络的模拟电路故障诊断方法研究[D];电子科技大学;2005年
10 谭阳红;基于小波和神经网络的大规模模拟电路故障诊断研究[D];湖南大学;2005年
中国硕士学位论文全文数据库 前10条
1 杨立儒;基于神经网络的电路故障诊断的研究与实现[D];解放军信息工程大学;2010年
2 刘兰兰;基于神经网络和遗传算法的H型钢粗轧工艺参数优化研究[D];山东大学;2011年
3 田鹏明;基于神经网络的振动主动控制研究[D];太原理工大学;2012年
4 姜宇;发动机裂解设备故障诊断技术的研究[D];吉林大学;2012年
5 邢远凯;基于决策树和遗传算法的神经网络研究及应用[D];浙江大学;2010年
6 高宝建;基于神经网络的月降水预报模型在洪泽湖的应用研究[D];南京信息工程大学;2012年
7 陈少华;基于Hopfield神经网络控制系统的研究[D];山东科技大学;2010年
8 王雅娣;基于智能蚂蚁算法优化的脱硫静态模型研究[D];重庆大学;2004年
9 来建波;基于神经网络的路段行程时间预测研究[D];云南大学;2011年
10 闫超;基于BP神经网络的煤矿深埋硐室软岩流变参数反演分析[D];安徽理工大学;2011年
中国重要报纸全文数据库 前10条
1 于翔;数字神经网络中的协同应用[N];网络世界;2009年
2 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年
3 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年
4 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年
5 记者 陈勇;人体免疫力能敌艾滋病吗[N];新华每日电讯;2000年
6 记者 杨骏;原来奶头信息素“导航”[N];新华每日电讯;2003年
7 本报首席记者 任荃 实习生 史博臻;轨交“神经网络”触动创新神经[N];文汇报;2011年
8 计算机世界实验室 韩勖;当布线系统遭遇神经网络[N];计算机世界;2009年
9 曹建兵 李祖兵 特约记者 何天进 本报记者 于莘明;给导弹植入“神经网络”[N];科技日报;2005年
10 谭薇;“潮湿计算机”:拥有人类智慧的超级大脑[N];第一财经日报;2010年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978