收藏本站
《西安电子科技大学》 2012年
收藏 | 手机打开
二维码
手机客户端打开本文

基于自适应振动信号处理的旋转机械故障诊断研究

张超  
【摘要】:在旋转机械设备故障诊断研究中,故障特征提取和模式识别关系到故障诊断的可靠性和准确性,因此是旋转机械故障诊断研究中的关键问题。利用轴承和齿轮的振动信号对其工作状态进行监测和诊断是目前旋转机械故障监测和诊断研究中最常用的方法。本学位论文应用经验模态分解、总体平均经验模态分解和局部均值分解等信号处理方法进行故障特征提取,并应用支持向量机进行故障模式识别。其主要内容如下: 1、基于经验模态分解的轴承和齿轮故障诊断研究。 针对旋转机械设备的工作环境恶劣难以提取故障频率的实际情况,应用奇异值差分谱理论对经验模态分解得到的本征模式分量进行消噪,更好地得到了轴承故障频率;通过计算经验模态分解所得到的本征模式分量的能量熵,在能量域角度找到了齿轮的故障特征,并进一步应用支持向量机对其进行模式识别,通过实例验证此方法的可行性;通过计算经验模态分解所得到的本征模式分量的奇异值熵,找到了齿轮的故障特征,并进一步应用支持向量机对其进行模式识别,通过实例验证此方法的有效性和在小样本情况下的可行性。 2、基于总体平均经验模态分解的齿轮故障诊断研究。 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出了基于总体平均经验模态分解和支持向量机的齿轮故障诊断方法。首先通过总体平均经验模态分解方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量;齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的能量熵判断是否发生故障;从包含有主要故障信息的本征模式分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于齿轮的故障诊断。 提出了一种基于总体平均经验模态分解奇异值熵和支持向量机的齿轮故障诊断方法。首先通过总体平均经验模态分解方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型。实验结果表明,即使在小样本情况下,基于奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型。 3、基于局部均值分解的轴承和齿轮故障诊断研究。 首先对轴承的振动信号进行随机共振消噪,然后对降噪振动信号进行局部均值分解,成功地提取出了轴承故障特征;应用局部均值分解对齿轮振动信号进行分解得到若干个乘积分量,求取每一个乘积分量的近似熵,进而找到故障特征向量,最后应用支持向量机对其进行模式识别。通过一故障诊断实例对此方法的可行性和有效性进行了验证,并与神经网络在训练时间和分类准确性方面进行了对比;通过求取经过LMD分解所得乘积分量的Lempel-Ziv指标获得轴承故障特征向量,进行了有效准确的故障诊断。 4、基于极值域均值模态分解的滚动轴承和转子系统故障诊断。 针对滚动轴承损伤性故障的故障诊断问题,提出了基于极值域均值模态分解的故障诊断方法,进行了故障特征频率的提取。首先将原始信号分解成若干个本征模式分量,然后通过计算各个本征模式分量与原始信号的相关系数确定包含故障特征信息的主要成分,除去虚假分量。最后针对主要成分的本征模式分量进行Hilbert包络解调提取故障特征,即轴承的损伤性故障特征。通过工程实例信号的分析结果以及与经验模式分解方法的对比均表明,该方法能够较快地提取轴承的故障特征。 针对转子不平衡故障和滚动轴承微弱损伤性故障的复合故障诊断问题,提出了基于第二代小波和极值域均值模态分解的故障诊断方法,进行了复合故障的耦合特征分离和故障特征频率的提取。该方法首先应用第二代小波对原始信号进行分解与重构;然后针对分解与重构出的低频信号进行频谱分析提取低频非调制故障特征;最后针对高频共振调制信号进行解调分析,以准确提取调制故障特征。通过工程实例信号的分析结果表明,该方法能够提取转子系统的复合故障特征。 5、总结全文并提出了研究展望。
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:TH165.3;TN911.7

手机知网App
【相似文献】
中国期刊全文数据库 前10条
1 黄建超;赵劲松;孙巍;丁艳昆;;基于PCA固体垃圾焚烧炉的早期故障诊断[J];化工进展;2006年12期
2 郝卫华;刘明光;;基于数学形态学的铁路电力线路故障诊断方法[J];电力科学与工程;2008年01期
3 国红波;马晓建;郑子明;;基于LabVIEW与EMD的工业缝纫机故障诊断[J];机械工程师;2009年02期
4 李兵;张培林;任国全;刘东升;米双山;;运用EMD和GA-SVM的齿轮故障特征提取与选择[J];振动、测试与诊断;2009年04期
5 肖志勇;杨小玲;刘爱伦;;基于改进EMD和LSSVM的机械故障诊断[J];自动化仪表;2008年06期
6 张登峰;郝伟;郝旺身;董辛旻;;模糊综合评判在风力发电设备诊断中的应用[J];机床与液压;2011年19期
7 沈枫;王孟莲;梁树甜;;基于神经网络和混合编程的整流桥故障诊断研究[J];船电技术;2011年10期
8 方桂花;赵永;李绪省;;模糊Petri网在液压泵故障诊断中的应用研究[J];机床与液压;2011年19期
9 李建福;;跟踪判断筛检法在液压系统故障诊断中的应用[J];江汉石油职工大学学报;2011年03期
10 连伟;王汉章;;工程机械液压系统故障的现场检测与诊断[J];黑龙江交通科技;2011年10期
中国重要会议论文全文数据库 前10条
1 刘仁德;胡申辉;徐家倬;;磨煤机的故障诊断[A];第十届全国设备监测与诊断技术学术会议论文集[C];2000年
2 戴乐云;李建康;;振动信号时间序列建模在故障诊断中的应用[A];振动工程学报(工程应用专辑)[C];2001年
3 李晓栋;胡清华;;汽轮机故障诊断文本支持系统的研究与建立[A];2004电站自动化信息化学术技术交流会议论文集[C];2004年
4 王航;于歆杰;;遗传算法在故障诊断中应用的新方法[A];2005年中国智能自动化会议论文集[C];2005年
5 单鸿鹏;关月红;;频谱分析技术在滚动轴承故障诊断中的应用[A];设备监测与诊断技术及其应用——第十二届全国设备监测与诊断学术会议论文集[C];2005年
6 张珍;韩厚德;陈宝忠;;基于卫星通信的船舶冷藏集装箱远程故障诊断系统[A];制冷空调新技术进展——第四届全国制冷空调新技术研讨会论文集[C];2006年
7 卫红梅;段滋华;;高速回转轴油膜振荡故障诊断分析[A];2006年石油和化工行业节能技术研讨会会议论文集[C];2006年
8 阳能军;汤伟;龙宪海;雷涛;;EMD及其在声发射检测中的应用研究[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年
9 蔡勇;王晓武;潘卫明;;基于瞬时转速的斯特林发动机循环系统故障诊断研究[A];2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集[C];2008年
10 黄忠民;;电喷发动机非正常熄火的故障诊断分析[A];全国城市公路学会第十四届学术年会论文集[C];2005年
中国重要报纸全文数据库 前10条
1 黄安华;液压制动系统的故障诊断[N];中国汽车报;2002年
2 李萍;济钢EAM离线网络点检和故障诊断管理系统开发应用[N];世界金属导报;2007年
3 胡荣山 马巍;上海海大一课题列入国家“863”计划[N];中国船舶报;2007年
4 孙建阳 刘波;小型渔船柴油机故障诊断与排除[N];中国渔业报;2008年
5 见习记者 仝亚娜;孙彦广:冶金故障诊断设备前景广阔[N];机电商报;2005年
6 小田;网卡故障诊断[N];中国电脑教育报;2000年
7 陈全东;干式复合“粘边”故障诊断[N];中国包装报;2003年
8 龚献荣;大型天然气装置实现网络化监测[N];中国化工报;2005年
9 周传勇 杜慧;济钢网络化设备点检与故障诊断管理系统上线运行[N];世界金属导报;2008年
10 汤怀京;WLAN也有“线”[N];中国计算机报;2004年
中国博士学位论文全文数据库 前10条
1 宋其江;基于有向图模型的故障诊断方法研究及其在航天中的应用[D];哈尔滨工业大学;2010年
2 陈非;基于过程信息融合的旋转机械信息(火用)故障诊断研究[D];华中科技大学;2010年
3 冯志鹏;计算智能在机械设备故障诊断中的应用研究[D];大连理工大学;2003年
4 何小斌;基于统计学方法的自适应过程监控与故障诊断[D];上海交通大学;2009年
5 宋凯;基于PLS的统计质量监控研究与应用[D];浙江大学;2005年
6 李敏;复杂机械基于数据的建模与故障诊断[D];太原理工大学;2010年
7 鲁峰;航空发动机故障诊断的融合技术研究[D];南京航空航天大学;2009年
8 蒋斌;机电系统故障诊断的理论与应用研究[D];浙江大学;2002年
9 盛晨兴;挖泥船动力机械远程诊断系统关键技术研究[D];武汉理工大学;2009年
10 张超;基于自适应振动信号处理的旋转机械故障诊断研究[D];西安电子科技大学;2012年
中国硕士学位论文全文数据库 前10条
1 王明秀;大型汽轮发电机故障诊断专家系统诊断处理子系统的研究[D];华北电力大学;2001年
2 刘峰;基于神经网络的水轮发电机组振动故障诊断专家系统的研究[D];西安理工大学;2003年
3 许东;地空导弹混合智能故障诊断专家系统的设计与实现[D];西北工业大学;2002年
4 石金彦;基于规则的数据挖掘方法在故障诊断中的应用[D];郑州大学;2003年
5 周春健;基于小波变换的旋转机械故障诊断[D];南京航空航天大学;2004年
6 陈洁;基于Web的远程监测与故障诊断系统研究[D];武汉科技大学;2004年
7 辛惠娟;汽车发动机故障诊断专家系统的开发研究[D];华北电力大学(河北);2004年
8 刘满国;基于小波的导弹测试信号处理与故障诊断[D];西北工业大学;2005年
9 朱胜利;关于独山子炼油厂进料泵的故障诊断[D];新疆大学;2002年
10 李晓彬;基于神经网络的工程结构在线监测与故障诊断研究[D];武汉理工大学;2002年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026