收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Identification of Favorable Alleles of ZmNYC1 Gene for Chlorophyll Related Traits by Association Mapping in Maize (Zea Mays L.)

AYE NYEIN CHAN  
【摘要】:(chl) is one of the most important physiological traits as it is closely related to leaf photosynthesis and crop yield potential. Chl metabolic pathway and series of genes involved in pathway has been well characterized and identified in Arabidopsis, which provide a good base to characterize chl related genes in maize. Among the known genes in pathway, Non-Yellow Coloring 1 (NYC1) gene which translates chlorophyll b reductase (CBR) plays an important role to adjust the ratio of chla (chlorophyll a) to chlb (chlorophyll b) which is an essential index for plant healthy growth, and to degrade chlb during leaf senescence. Candidate-gene based association mapping is study of the correlation between phenotypic variation and DNA polymorphisms, and it is very efficient to identify the new and useful alleles for plant improvement. The objective of this study is to investigate favorable polymorphisms of ZmNYC1 gene associated with chl content at seedling stage and mature stage under natural and induced conditions using association mapping.Material and Methods:An association mapping panel consisting of 150 maize (Zea mays L.) inbred lines was used in both laboratory and field experiments. Each inbred was prepared two replicate whereas six healthy seedlings represents one experimental unit, and grown under control condition. When the seedlings reached two-leaf-stage (V2), one replicate of each inbred was subjected to light treatment and the other was exported to darkness for four days. By using SPAD-502 chl meter, relative chl content was determined at the first and second leaves under light and dark treatments and at ear leaf after pollination with three time intervals. Besides, chl was extracted from the green part of three seedlings of each genotype and was analyzed by the method described by Arnon,1949. Genotyping of ZmNYC1 re-sequencing was conducted using the four pairs of primer for each inbred in panel. Association analysis was performed by using TASSEL software and confirmed the results via mRNA analysis.Results and Discussion:Natural variation in the chl content (SPAD values) at seedling stage and mature stage was examined over two-fold in the association panel. Meanwhile, the broader variation of the chl concentration (over ten-fold) in dark treatment than in light (three to seven-fold) at seedling stage exhibited the differential response of the natural maize population to dark. We therefore, identified some inbreds that were sensitive (over 70% chl degradation) or insensitive (below 40% chl degradation) to dark. On average, chl content of insensitive inbreds was over two-fold higher than sensitive inbreds in dark treatment. Through candidate-gene association analysis, it was detected that 19 favorable polymorphisms out of 105 polymorphic sites in ZmNYC1 gene were significantly associated with chl related traits in association panel. This result points out that a critical role of ZmNYCl gene and its polymorphisms affect chl content in maize. Polymorphisms such as S320, S463 and S2951 explained higher phenol typic variation ranging from 5.34% to 8.89% for chlb and chl ratio under light condition, whereas S3355 and S3901 exhibited phenotypic variations from 5.18% to 7.01% for chl_ratio, chla deg (chl a degradation) and total_chl deg (total chl degradation) under dark. This suggests that different gene regulatory network may exit for different traits in different environment. The three polymorphic sites at S463, S3355 and S3645 detected in sensitive and insensitive to dark individuals explained phenotypic variation ranging from 47% to 89% with 1- to 5.8-fold change between favorable and unfavorable alleles. The results indicate that strong validation on association of ZmNYC1 gene with chl content. Besides, expression differences in this two inbred groups also designate that the gene associated with chl content at the transcript level.Conclusion:Although, the natural variation in chl content at both seedling and mature stages exhibit similar trend in association panel, amount of chl in the leaf tissues varies with the age of the plants at different developmental stage. We filtered inbred lines that were sensitive or insensitive to dark treatment depending upon their differential response to dark evaluated by chl concentration at seedling stage. Polymorphisms in ZmNYC1 gene contributed more variation in chlb, chl ratio, and chl degradation; however different gene regulatory network may exit for different traits in different environment. The expression differences between two inbred groups (sensitive or insensitive to dark) suggest that ZmNYCl gene affect the phenotypic variation at the transcript level. The results of our study will not only support better understanding of genetic basic of chl, but also assist the molecular breeding of chl content through the identified polymorphisms.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 Zhitong YIN;Qiuxia QIN;Xin KAN;Yanan CHEN;Qian CHENG;Dexiang DENG;;Genome-wide Association Analysis of Fast Chlorophyll Fluorescence Parameters in Maize[J];Agricultural Biotechnology;2016年06期
2 Wang Yong-chao;Gu Wan-rong;Ye Le-fu;Sun Yang;Li Li-jie;Zhang He;Li Jing;Wei Shi;;Physiological Mechanisms of Delaying Leaf Senescence in Maize Treated with Compound Mixtures of DCPTA and CCC[J];Journal of Northeast Agricultural University(English Edition);2015年03期
3 ZHAO Li-juan;XIE Jing-fang;ZHANG Hong;WANG Zhen-tao;JIANG Hong-jin;GAO Shao-long;;Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings(Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium[J];Journal of Integrative Agriculture;2018年04期
4 ;Study on the Photosynthetic Characteristics in Spring Maize (Zea mays L.)of Different Quality Type[J];Journal of Northeast Agricultural University(English Edition);2005年02期
5 刘汾汾;陈楚群;詹海刚;;Decadal variability of chlorophyll α in the South China Sea: a possible mechanism[J];Chinese Journal of Oceanology and Limnology;2012年06期
6 杨顶田;叶海彬;王桂芬;;Impacts of internal waves on chlorophyll a distribution in the northern portion of the South China Sea[J];Chinese Journal of Oceanology and Limnology;2010年05期
7 洪法水 ,魏正贵 ,赵贵文;Mechanism of lanthanum effect on chlorophyll of spinach[J];Science in China(Series C:Life Sciences);2002年02期
8 MagnusLarson ,Lennartjnsson;Estimation of chlorophyll-a concentration in the Zhujiang Estuary from SeaWiFS data[J];Acta Oceanologica Sinica;2002年01期
9 刘子琳,蔡昱明,宁修仁,刘诚刚,朱根海,王小谷;Primary productivity and chlorophyll a in Prydz Bay and its mouth in Antarctica during the austral summer of 1999/2000[J];Chinese Journal of Polar Science;2001年01期
10 ;Quantitative trait loci analysis of chlorophyll content for flag leaf in rice[J];Chinese Rice Research Newsletter;2000年04期
11 ;Quantitative trait loci analysis of chlorophyll content for flag leaf in rice[J];Chinese Rice Research Newsletter;2000年04期
12 王自磐;Ecology of newly formed sea ice in the Weddell Sea,AntarcticaⅠ.chlorophyll a and nutrients[J];极地研究(英文);1997年01期
13 ;The patterns of distribution of chlorophyll a and primary production in coastal upwelling area off Zhejiang[J];Acta Oceanologica Sinica;1988年01期
14 Martin P.Hughes;Victor Mlambo;Cicero H.O.Lallo;Nasreldin A.D.Basha;Ignatius V.Nsahlai;Paul G.A.Jennings;;Accuracy of two optical chlorophyll meters in predicting chemical composition and in vitro ruminal organic matter degradability of Brachiaria hybrid,Megathyrsus maximus, and Paspalum atratum[J];Animal Nutrition;2017年01期
15 Luyan NIU;Xiaoyan ZHANG;Jiabo SUN;Jiye ZHENG;Fengyun WANG;;Research on Estimation Models of Chlorophyll Content in Apple Leaves Based on Imaging Hyperspectral Data[J];Agricultural Biotechnology;2018年05期
16 Dong-xing FAN;Yu-ling HUANG;Lin-xu SONG;De-fu LIU;Ge ZHANG;Biao ZHANG;;Prediction of chlorophyll a concentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir[J];Water Science and Engineering;2014年01期
17 ;Temperature and light tolerance of representative brown,green and red algae in tumble culture revealed by chlorophyll fluorescence measurements[J];Acta Oceanologica Sinica;2008年04期
18 ;Science Letters:A modified chlorophyll absorption continuum index for chlorophyll estimation[J];Journal of Zhejiang University Science A(Science in Engineering);2006年12期
19 ;Distribution of chlorophyll-a off the Changjiang River and its dynamic cause interpretation[J];Science in China(Series D:Earth Sciences);2005年07期
20 ;Inversion of oceanic chlorophyll concentrations by neural networks[J];Chinese Science Bulletin;2001年02期
中国重要会议论文全文数据库 前10条
1 徐淑兔;Aye Nyein Chan;Yaqin Shi;Ya'nan Li;Jiquan Xue;;Genetic analysis of chlorophyll contents before and after dark treatment at V2 stage in maize[A];第一届全国玉米生物学学术研讨会论文汇编[C];2015年
2 ;Diurnal variation of gas exchange,chlorophyll fluorescence and xanthophylls cycle components in leaves of maize cultivars released in different years[A];“全国第五届青年植物生态学学术研讨会”暨“第二届植物生理生态学学术研讨会”论文摘要集[C];2004年
3 陈景超;Zhang Chaoxian;Wei Shouhui;黄红娟;Zhang Yang;;The dynamics of shikimate accumulation and chlorophyll relative content in Calystegia hederacea Wall.following glyphosate application[A];农田杂草与防控[C];2011年
4 刘寒寒;Kewei Zhang;;Effect of Phosphorus Fertilization on Maize Photosynthetic Performance[A];第一届全国玉米生物学学术研讨会论文汇编[C];2015年
5 Jinheng Zhang;Chao Han;Shoucai Zhang;;Estimating the Impacts of Sulphur Dioxide on Rice via Chlorophyll and Peroxidase Activity Transmittance Spectra Prediction Models[A];Sensor Letters Volume 8 Number 1[C];2010年
6 Zhaohai Wang;Xiao Hong;Keke Hu;Shiyun Du;Yang Li;Dandan Hu;Kexin Cheng;Yangsheng Li;;The rice Yellow-Green Leaf 18 locus is essential for chlorophyll synthesis, plant growth and retrograde plastid-nuclear signaling[A];2016年全国植物生物学大会摘要集[C];2016年
7 Jinheng Zhang;Chao Han;Dapeng Li;;New Vegetation Index Monitoring Rice Chlorophyll Concentration Using Leaf Transmittance Spectra[A];Sensor Letters Volume 8 Number 1[C];2010年
8 ;Effects of nitrogen stress and recovery on the chlorophyll fluorescence characteristics of Nannochloris oculata[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年
9 吴仕强;Fuli Zhao;Cai Ruhai;Chen Jiansheng;;LEDs lamping on the plant[A];“广东省光学学会2013年学术交流大会”暨“粤港台光学界产学研合作交流大会”会议手册论文集[C];2013年
10 ;Fine Mapping and Candidate Gene Analysis of a Green-revertible Albino Gene gra(t) in Rice (Oryza sativa L.)[A];2009年中国作物学会学术年会论文摘要集[C];2009年
中国博士学位论文全文数据库 前10条
1 Muhammad Irfan;[D];沈阳农业大学;2014年
2 王超;水下可见光通信单光子检测关键技术研究[D];战略支援部队信息工程大学;2018年
3 伊凡(Ali Raza Irfan);玉米自交系耐冷性生理机制与调控效应研究[D];东北农业大学;2018年
4 Tanzeelur Rahman;不同行距配置下玉米—大豆带状套作水分动态及利用效率估测研究[D];四川农业大学;2016年
5 罗新宁;基于SPAD的棉花氮素营养诊断及氮营养特性研究[D];新疆农业大学;2010年
6 穆罕默德謝里夫拉伊汉(MOHAMMAD SHARIF RAIHAN);[D];华中农业大学;2016年
7 FARHAN ALI;[D];华中农业大学;2013年
8 KMW Rajawatta;中国西北玉米生长仿真模型研究与系统开发[D];西北农林科技大学;2015年
9 黄凌霞;基于光谱技术的蚕桑相关特性数字化研究[D];浙江大学;2007年
10 鱼欢;施氮量、氮源及栽培模式对小麦、玉米生理特性及产量的影响[D];西北农林科技大学;2009年
中国硕士学位论文全文数据库 前10条
1 AYE NYEIN CHAN;[D];西北农林科技大学;2016年
2 施光耀;基于SPAD技术的核桃-大豆复合系统中大豆竞争能力研究[D];河南农业大学;2018年
3 李兵;基于SPAD值水稻氮素追肥决策系统开发与验证[D];吉林农业大学;2018年
4 龚刚猛;虚拟水稻叶色建模及仿真算法研究[D];江西农业大学;2016年
5 张安;基于SPAD的飞行时间三维图像传感器关键技术研究[D];天津大学;2018年
6 王兰花;水稻植株叶片叶色可视化建模研究[D];江西农业大学;2018年
7 刘凯;基于CMOS工艺的SPAD阵列及像素单元电路设计[D];电子科技大学;2018年
8 袁召锋;基于SPAD值的水稻氮素营养诊断与调控研究[D];南京农业大学;2016年
9 乔俊;基于SPAD的荧光寿命图像传感器关键技术研究[D];天津大学;2017年
10 李杰;基于SPAD值的水稻变量施氮模型及其应用研究[D];贵州大学;2017年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978