收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

膳食纤维对蛋白包裹型乳液油脂消化的影响及其机制

覃定奎  
【摘要】:乳液递送系统可有效包被、保护并靶向递送饲料及食品行业中的诸多脂溶性成分(如脂溶性维生素、类胡萝卜素、植物甾醇、类黄酮等)。这些生物活性分子的生物可给性和利用度通常取决于乳液油脂消化的速率和程度。在胃肠道中,膳食纤维对乳液油脂消化过程的影响取决于其本身的分子及理化特性。本研究借助全自动酸碱滴定仪(pH-stat),对体外胃肠道(GIT)消化模型的相关参数(滴定液浓度、离子强度度、脂肪酶及胆盐浓度、温度、转子转速)进行了标准化,建立并完善了单级和多级GIT消化模型。在这两种体外消化模型的基础上,选择三种不同类型和浓度水平的膳食纤维(带正电荷的壳聚糖、带负电荷的海藻酸钠、呈电中性的刺槐胶),测定其在体外GIT消化模型的不同生理阶段(初始阶段、口腔、胃、小肠)对乳液理化性质(粒径、ζ-电位、表观黏度)和微观结构的影响。假设每个三酰甘油分子可释放2个自由脂肪酸分子(FFAs),通过实时记录用以中和FFAs所消耗的氢氧化钠(NaOH)溶液的体积,可计算出被脂肪酶水解的三酰甘油在初始脂肪乳液样品中所占的比例(即消化率)。随后,对消化曲线进行LOS(logarithm of slope)分析,可得到油脂消化过程中的反应动力学参数。各试验内容及结果如下:1.选取三种带有不同电荷属性的膳食纤维(壳聚糖、海藻酸钠、刺槐胶),按比例与β-乳球蛋白(1 wt%)乳化形成的纳米乳液混合,使乳液-多糖复合体系中的膳食纤维浓度分别为0、0.1、0.2、0.4 wt%。含有膳食纤维的乳液在体外小肠消化模型中的消化时间为2 h(37℃),消化体系中钠离子和钙离子的摩尔浓度分别为150 mM和10 mM,脂肪酶浓度为1.6 mg/mL,胆盐浓度为5 mg/mL。测定消化前后乳液样品的粒径、PSD、ζ-电位和流变学参数。研究显示,膳食纤维对消化前后乳液液滴理化性质及微观结构的影响各不相同,且取决于纤维类型和浓度:0.1-0.4%的壳聚糖可使乳液液滴平均粒径从0.206μm增大至170-240μm;低浓度的海藻酸钠(0.1-0.2 wt%)对粒径影响不明显,但高浓度组(0.4%)可使乳液平均粒径增大到约54μm;刺槐胶(0.1-0.4 wt%)可诱发乳液液滴形成絮凝体(粒径约1至11μm)。通过PSD、ζ-电位和激光共聚焦图像可推断:(1)低浓度的海藻酸钠和刺槐胶诱发乳液液滴絮凝或聚集的原理为排空效应,且内部作用力相对较弱,因此结构相对不稳定;(2)高浓度的海藻酸钠可与人工小肠液中的钙离子结合形成凝胶体系,且可包埋乳液中的部分脂肪液滴;(3)而带正电荷的壳聚糖则是通过静电桥连作用引发液滴聚集,且结构相对紧凑。2.通过记录用以滴定乳液油脂消化产物FFAs所消耗的NaOH滴定液(0.1 M),可计算乳液油脂消化所释放的FFAs在初始乳液样品总TAG中所占的比例,进而得到反映乳液油脂消化的动态曲线。当乳液中含有较低浓度水平(0.1-0.2 wt%)的膳食纤维,自由脂肪酸的初始释放速率排序为:对照组≈刺槐胶组≈海藻酸钠组壳聚糖组,但各处理组最终油脂消化率(≈82%-88%)差异不显著(P0.05)。当膳食纤维的浓度水平增高至0.4 wt%时,海藻酸钠和壳聚糖显著抑制了乳液油脂消化过程,油脂消化速率和程度如下:对照组≈刺槐胶组(≈83%-87%)壳聚糖组(≈72%)海藻酸钠组(≈60%)。3.以1 h为限,于FFAs释放曲线中取13个消化数据点,在前10 min内取8个样本点,其后,每10 min取1个样本点。将所得数据点进行LOS分析,根据R2寻求最佳线性回归方程。结果表明,不同类型和浓度水平的膳食纤维影响乳液油脂消化的潜在反应动力学机理也存在差异:含不同膳食纤维的乳液油脂消化动态曲线存在一阶和二阶反应的差异,表现为存在单个或两个伪一级反应速率常数,其大小取决于膳食纤维的类型和浓度水平。4.在多级GIT消化模型中,调节消化前乳液-多糖混合溶液中膳食纤维的浓度至1.6wt%,以使单级和多级GIT模型的小肠阶段膳食纤维浓度保持一致(0.4 wt%)。通过对比消化率和伪一级速率反应常数,得到以下结论:海藻酸钠在单级GIT模型中的油脂消化率约为60%,在多级GIT模型中提高了23%;壳聚糖组在单级GIT模型中的消化率≈72%,多级GIT模型处理后消化率提高至83%;空白组和LBG组乳液样品在多级GIT模型中未见显著提升(P0.05)。分析伪一级速率反应常数可推断:多级GIT消化模型中人工唾液和胃液对乳液-多糖混合溶液的预处理,可改变油脂与脂肪酶结合的比表面积或界面特性,进而提高乳液油脂消化率。综上所述,我们在此提出构化设计准则:通过控制膳食纤维的类型和浓度水平,即可控制乳液液滴在胃肠道中的理化性质(粒径、ζ-电位、黏度)和微观结构,最终可有效调控特定乳液-多糖结构体系在胃肠道中的油脂消化速率和程度。同时,经过标准化的单级和多级消化模型可用于筛选饲料或食品级的功能性乳液递送系统


知网文化
【相似文献】
中国期刊全文数据库 前3条
1 徐琼;姚晓琳;王娜娜;田大志;方亚鹏;Glyn O.Phillips;Katsuyoshi Nishinari;;共轭亚油酸水包油型乳液的物理化学稳定性[J];农业工程学报;2013年11期
2 李冉;白婧;冷小京;宫本宁;任发政;;花生油乳液稳定特性研究[J];中国奶牛;2009年07期
3 毛国琪;顾继友;刘海英;;尿素改性聚醋酸乙烯酯乳液的合成[J];东北林业大学学报;2011年02期
中国重要会议论文全文数据库 前5条
1 王小君;杨建军;吴青云;张建安;吴明元;;氟化聚氨酯-丙烯酸酯乳液研究进展[A];中国聚氨酯工业协会第十三次年会论文集[C];2006年
2 刘海英;顾继友;邸明伟;徐小军;;纳米SiO_2粒子/聚醋酸乙烯酯杂化乳液的性能研究[A];2010年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2010年
3 李丽娜;贺高红;丁路辉;刘红晶;;凝胶型W/O/W多重乳液担载胰岛素的前期研究[A];大连理工大学生物医学工程学术论文集(第2卷)[C];2005年
4 谭华;刘温霞;;ASA Pickering乳液:综述[A];山东造纸学会第七届会员代表大会暨山东造纸学会2012年学术年会论文集[C];2012年
5 魏倩;张军华;;纳米醋丙乳液的合成与表征[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
中国博士学位论文全文数据库 前8条
1 林兆云;基于功能性微粒制备的Pickering乳液及其应用性研究[D];华南理工大学;2016年
2 覃定奎;膳食纤维对蛋白包裹型乳液油脂消化的影响及其机制[D];西北农林科技大学;2017年
3 张敬春;粘土颗粒与表面活性剂在油水界面的相互作用及其共同稳定的乳液[D];山东大学;2014年
4 刘红晶;可载药W/O/W多重乳液稳定性研究及多重乳液担载胰岛素初探[D];大连理工大学;2007年
5 牛付阁;卵白蛋白—阿拉伯胶相互作用及其在油水界面的吸附特性[D];江南大学;2015年
6 蓝强;表面活性物质与纳米颗粒协同稳定的Pickering乳液[D];山东大学;2007年
7 刘浩;基于壳聚糖的新型Pickering乳液及相应功能材料的制备和应用[D];华南理工大学;2014年
8 台秀梅;温敏改性纳米SiO_2复合物的制备及其在Pickering乳液中的应用[D];太原理工大学;2013年
中国硕士学位论文全文数据库 前10条
1 王晓荣;功能性单体作用下环氧改性水性聚氨酯丙烯酸酯无皂乳液的制备及其在水性涂料中的应用[D];陕西科技大学;2015年
2 田叶;乳液液滴在对流干燥过程中颗粒表面形成的机制研究[D];苏州大学;2015年
3 张晓龙;汽车工业空气滤纸浸渍乳液的研究[D];中国制浆造纸研究院;2015年
4 吴彬;双组分防水柔软整理剂的合成及应用[D];浙江大学;2015年
5 王晓雯;纳米二氧化钛稳定Pickering乳液的制备与抗菌性能[D];西北师范大学;2013年
6 李彤;衣康酸酯基聚氨酯/聚丙烯酸酯杂化乳液的制备[D];青岛科技大学;2016年
7 成功;改性醋丙聚合物水泥防水涂料的合成与应用研究[D];湖北工业大学;2016年
8 徐佩佩;基于脂肪酸和胺的CO_2响应型乳液的制备[D];山东大学;2016年
9 付伟;细菌纤维素纳米纤维稳定Pickering乳液的研究[D];天津科技大学;2015年
10 蒋艳伟;基于淀粉纳米晶稳定的Pickering乳液的制备及消化特性研究[D];江南大学;2016年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978