关于非线性反应扩散方程全局吸引子的整体与局部几何拓扑结构的研究
【摘要】:
在这篇博士学位论文中,我们主要研究了下列非线性反应扩散方程全局吸引子的整体与局部几何拓扑结构,得到了对全局吸引子几何拓扑结构的新的描述.其中Ω(?)RN是有界光滑区域.
假定f:Ω×R→R满足Caratheodory条件:
i)对每一个s∈R,函数F(·,s)关于Ω是Lebesgue可测的;
ii)对几乎所有的x∈Q,函数f(x,·)关于R是连续可微的.
另外,假定存在正常数Ci,1≤i≤4和整数p≥2,f满足下列增长条件:|f(x,s)|≤C1|s|p-1+C2,对所有的(x,s)∈Ω×R, sf(x,s)≤-C3|s|p+C4,对所有的(x,s)∈Ω×R, f'(x,s)≤(?),对所有的(x,s)∈Ω×R.其中Q(?)RN是有界光滑区域,(?)是-△算子的一列特征值,j=1,2,
假定f(u)是C1函数且满足下列假设|f'(s)|≤C1|s|p-2+C2,p≥2, f(0)=f'(0)=0, f'≥一(?).全文共分五章:
第一章,介绍无穷维动力系统的理论和应用的背景,全局吸引子问题的发展及研究进展情况,总结全局吸引子存在性、维数估计和惯性流形的已有的理论和方法以及动力系统几何拓扑理论方面已有的成果.
第二章,给出了本文用到的一些基础知识.
第三章,主要研究了半线性反应扩散方程I当外力项g∈God时,God是相空间L2(Q)中的稠密子集(正则值集合),全局吸引子的整体几何拓扑结构,得到了对全局吸引子的新的刻画,也就是说,方程I的全局吸引子是平衡点的Lipschitz连续的不稳定流形的并,在一定程度上克服了方程I在惯性流形不存在时对全局吸引子的几何结构的刻画所带来的困难,这能很好地反映半线性反应扩散方程I的全局吸引子的整体几何拓扑结构.
第四章,主要研究了在第三章中得到的全局吸引子的代数和拓扑结构,通过充分考虑全局吸引子自身所具有的性质,受文献[111]中关于建立Witten复形理论的启发,在我们所得到的半线性反应扩散方程I的全局吸引子(?)上建立了Witten同调群.并证明了(?)具有CW复形结构,得到了Witten同调群、胞腔同调以及奇异同调群之间的同构关系,这给出了奇异同调群的一种有效的计算方法.最后,结合全局吸引子的Morse过滤结构和相对同调群理论,我们给出了全局吸引子的相对同调群的刻画,得到了Morse等式.
第五章,主要研究了一类具有任意阶多项式增长的非线性反应扩散方程Ⅱ的全局吸引子的局部几何拓扑结构,即如果方程Ⅱ的线性化方程的谱和虚轴相交时,我们所考虑的非线性反应扩散方程Ⅱ将出现中心流形,我们得到了中心流形定理.