青海省积雪监测与青南牧区雪灾预警研究
【摘要】:
季节性雪被对水文过程和气候具有重要的作用。积雪覆盖面积的动态变化对水体和能量循环以及社会经济和生态环境均具有重大的影响。而且积雪融水是干旱、半干旱地区生态系统的重要水源。冬春季降雪是制约我国牧区畜牧业发展的重要因素。积雪不仅会掩埋牧草,造成畜牧草料供应不足,而且在没有饲草储备或储备不足的牧区,造成大批家畜因冻饿而死亡的情况,从而发生“雪灾”。青海草原辽阔,草原面积3647×104ha,其中可利用草地面积3161×104ha,是我国六大牧区之一。雪灾是青海牧区冬春季节的主要自然灾害,每年10月至次年4月这一时段,青海牧区玉树、果洛、黄南南部、海南南部、祁连山等地区极易出现局地或区域的强降雪天气过程,加之气温较低,积雪难以融化,时常造成大雪封山、冻死、饿死牲畜,使牧区人民生命财产遭受巨大损失。
应用遥感技术动态监测积雪的覆盖面积和反演积雪深度对牧区雪灾监测与评价具有重要意义。本文首先利用可见光MODIS每日积雪产品具有较高空间分辨率(500m)和被动微波AMSR-E SWE不受云影响的特点,合成具有较高积雪识别率的用户自定义每日积雪产品,用于监测青海积雪覆盖面积;其次用被动微波AMSR-E BT每日产品,结合气象地面台站数据,反演青海积雪深度;然后利用MODIS EVI数据结合地面实测,反演青南牧区草地地上生物量;最后依据前面研究得到的积雪覆盖面积、积雪深度、草地载畜量结合青南牧区其他数据库,对建立青南牧区雪灾预警及风险评估模型作方法性研究,以期为青海积雪监测和青南牧区雪灾预警提供科学依据。
通过本文的研究,可以得出如下结论:1)以青海省为研究区,用MODIS/Terra和MODIS/Aqua的每日积雪产品合成新的积雪影像(MOYD10A1),该影像的图像云量比MOD10A1、MYD10A1减少了大约14%。青海用户自定义合成的积雪影像MOYD10A1在各种天气条件下的积雪分类精度为43.7%(MOD10A1的积雪分类精度为43.5%,MYD10A1的积雪分类精度为27.7%)。用MOYD10A1和AMSR-E SWE用户自定义合成积雪影像MAl0A1的积雪分类精度为54.5%,陆地分类精度为89.2%,总分类精度(雪+陆地)为85.5%。2)利用2003-2008年5个积雪季(10-3月)降轨AMSR-E 18和36 GHz波段的水平和垂直极化亮温数据,结合43个气象台站的实测雪深、日最高温等气象数据,分析青海省影响雪深反演的因子,发现湿雪、融雪、大型水体、深霜层等因素严重影响雪深模型的建立,其中深霜层的影响最大。根据剔除不合理数据后的639对有效样本,用不同的亮温差和实测雪深值作回归分析,建立青海省基于AMSR.E亮度温度数据的雪深反演模型SD=0.43(Tb18V—Tb36V)+2.06,用2002-2003年10-3月104对雪深大于3cm的样本,对得到的线性回归模型的反演精度进行评价。结果表明,公式反演的雪深值和实测值之间的各项误差均比较小,可以用于监测研究区雪深。3)以青南牧区为研究区,利用2006年8月和2007年8月的植被指数(MODIS-EVI)和草地地面样方实测值,建立草地地上生物量遥感反演模型,y=297.15e4.9492x(R2=0.5626,N=396)。用2008年草地地面样方实测值代入该公式得出的估测值对比,平均误差为21.06%,其精度为78.94%。依据陈全功的关键场理论,计算出2006年-2008年青南牧区14个县的草地地上生物量、采食牧草总量、理论载畜量、冬春场载畜量和夏秋场载畜量。4)从草地畜牧业角度考虑青南牧区雪灾情况,利用遥感和地理信息技术结合本文第二章、第三章、第四章的结果及研究区统计资料,对青南牧区的积雪、草地、家畜三者之间的关联性进行分析,建立雪灾预警分级指标,最后通过对雪灾发生前的草地抗灾力和家畜承灾体的监测,建立青南牧区的雪灾预警判别模型和风险评估模型,对青南牧区的雪灾预警判别模型和风险评估模型作了方法性研究。