收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

关于图谱的若干研究

许英  
【摘要】: 对于一个图G,用A(G)表示图G的邻接矩阵,矩阵A(G)的特征值称为图G的特征值,图G的特征值组成的序列称为图G的谱.图的谱是图的一种重要性征,在物理和化学领域中,通过对物质分子所对应的分子图的谱的研究,可以预知该物质在某些物理和化学方面的性质.而在计算机网络中,研究网络对应的图的谱将为深入研究该网络提供一个非常有用的代数工具.但是对于大量的图来说,还不能直接求出它们的谱,因此对图的特征值的估计是图论中一个相当活跃的课题,近30年来,已有大量的文献和结果.本文主要研究了阿贝尔Cayley图,阿贝尔双Cayley图,阿贝尔混合Cayley图的谱,以及双循环有向图的一些代数性质,又刻划了一类高斯整谱循环有向图.另外,我们还研究了有向图的谱以及拟树图中Laplacian宽度最大的图等问题. 第一章,我们介绍了研究背景和一些基本概念,给出了Cayley图、双Cayley图、混合Cayley图、谱、高斯整谱图、拉普拉斯宽度等的定义.对各类研究问题的历史与现状进行了一定程度的综述.最后介绍了本文的研究内容和主要结果.第二章,我们首先研究了折叠立方体和双折叠立方体的谱;其次研究了阿贝尔Cayley图的邻接矩阵以及它的谱,由此我们给出了阿贝尔双Cayley图和混合Cayley图的谱,根据双Cayley图的定义我们又给出了有向双Cayley图的定义,进一步研究了阿贝尔群上双Cayley有向图和混合Cayley有向图的谱;最后,我们研究了有向双循环图的谱以及有向双循环图中有向支撑树个数的渐进计数定理.第三章,主要研究了二部有向图的二部补图的谱,并且定义了有向图的二部积和完全积,从而进一步研究了有向图二部积和完全积的谱.第四章,我们主要研究了拟树图的Laplacian宽度,确定了一类拟树图中Laplacian宽度最大的图是唯一的.第五章,我们主要研究了高斯整谱循环有向图,完全刻划了点数为k,2k,4k的高斯整谱循环有向图,同时给出了一类点数为2tk的高斯整谱循环有向图,其中t2且k是奇数.


知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978