收藏本站
《武汉科技大学》 2008年
收藏 | 手机打开
二维码
手机客户端打开本文

一种用于学习非平衡数据支持向量机的改进

蒋莎  
【摘要】: 支持向量机(Support Vector Machine, SVM)是由Vapnik等人于上世纪90年代提出的一种崭新的学习机器,它作为统计学习理论的实现方法,是处理小样本学习的有效工具,在模式识别、信号处理、自动化、通讯等领域得到了广泛应用。在不平衡样本集中,不同类别的样本数量上的差异导致分类器性能的下降,所以一直以来不平衡样本集都是机器学习的一个研究热点。在不平衡样本集中寻找SVM的最优参数(又称模型选择)也是SVM研究领域的一个重要分支。 实际应用中,分类数据往往是非平衡数据,少数类别的数据可能有很大的分类代价。分类性能不仅要考虑分类精度,同时要考虑分类代价。本文主要研究了非平衡SVM中参数的优化选取问题。SVM在各行各业中的应用已经取得了良好的效果,SVM的参数选取是SVM研究中的重要问题,参数选取的不同,对SVM的泛化性能影响很大。非平衡SVM的参数优化选取的研究较少,本文针对非平衡问题,建立了参数选取的模型,设计了算法,并进行了相关实验。 本文扩展了SVM学习方法,对于以高斯核为核函数时的少数类和多数类使用不同的惩罚参数C+、C-以获得高敏感度的超平面,利用遗传算法对SVM的学习参数进行优化调整。同时,通过改进评价函数,对分类结果的质量进行评价。实验结果表明,算法对于非平衡数据的分类有较好分类结果,对少数类样本预测的准确性较高。
【学位授予单位】:武汉科技大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TP18

【相似文献】
中国期刊全文数据库 前10条
1 解丹蕊;韩建新;薛惠锋;杜喆;;非均衡数据的支持向量机新方法[J];计算机应用研究;2009年05期
2 蒋国瑞;司学峰;;基于代价敏感SVM的电信客户流失预测研究[J];计算机应用研究;2009年02期
3 姚全珠;田元;王季;杨增辉;张楠;;基于最小二乘支持向量机的非平衡分布数据分类[J];计算机工程与应用;2008年05期
4 王娟娟;任秋实;;基于SMO的不同惩罚系数的SVM算法[J];信息技术;2006年10期
5 李彩霞;;基于移动客户数据流失预测模型的比较分析研究[J];硅谷;2009年18期
6 赵宇;李兵;李秀;刘文煌;任守榘;;基于改进支持向量机的客户流失分析研究[J];计算机集成制造系统;2007年01期
7 田盛丰,黄厚宽;基于支持向量机的数据库学习算法[J];计算机研究与发展;2000年01期
8 张铃;支持向量机理论与基于规划的神经网络学习算法[J];计算机学报;2001年02期
9 阎辉,张学工,李衍达;支持向量机与最小二乘法的关系研究[J];清华大学学报(自然科学版);2001年09期
10 朱国强,刘士荣,俞金寿;支持向量机及其在函数逼近中的应用[J];华东理工大学学报;2002年05期
中国重要会议论文全文数据库 前10条
1 林杰华;张斌;李冬森;宋华茂;余志强;王浩;;支持向量机在电力客户信用评级中的应用[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
2 蒋铁军;张怀强;李积源;;多变量系统预测的支持向量机方法研究[A];管理科学与系统科学研究新进展——第7届全国青年管理科学与系统科学学术会议论文集[C];2003年
3 黄淑云;孙兴玉;梁汝萍;邱建丁;;基于小波支持向量机预测蛋白质亚细胞定位研究[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
4 谢湘;匡镜明;;支持向量机在语音识别中的应用研究[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
5 涂冬成;薛龙;刘木华;赵进辉;沈杰;吁芳;;基于支持向量机的鹅肉肉色客观评定研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
6 杨凌;刘玉树;;基于支持向量机的坦克识别算法[A];第三届全国数字成像技术及相关材料发展与应用学术研讨会论文摘要集[C];2004年
7 师旭超;巴松涛;;基于支持向量机方法的深基坑变形预测[A];科技、工程与经济社会协调发展——河南省第四届青年学术年会论文集(上册)[C];2004年
8 张军;;支持向量机方法在地下水位干扰排除中的初步应用[A];2007年地震流体学术研讨会论文摘要集[C];2007年
9 许建生;盛立东;;基于改进的支持向量机和BP神经网络的识别算法[A];第八届全国汉字识别学术会议论文集[C];2002年
10 荣海娜;张葛祥;张翠芳;;基于支持向量机的非线性系统辨识方法[A];中国自动化学会、中国仪器仪表学会2004年西南三省一市自动化与仪器仪表学术年会论文集[C];2004年
中国重要报纸全文数据库 前10条
1 课题主持人 李心丹 课题协调人 上海证券交易所 施东晖 傅浩 课题研究员 宋素荣 查晓磊 宾红辉 张许宏 郭静静 黄隽 南京大学工程管理学院;内幕交易与市场操纵的行为动机与判别监管研究[N];中国证券报;2007年
2 李水根;计算机详解配伍与药效关系[N];健康报;2005年
3 清华大学 苏光大;非接触式人脸识别技术[N];计算机世界;2006年
4 YMG记者 李仁 通讯员 曲华明 孙运智;我市九项目进入省“盘子”[N];烟台日报;2010年
5 上海大学理学院教授、副院长 陆文聪;酷爱化学 孜孜以求[N];中国化工报;2006年
6 ;选择合适的数据挖掘算法[N];计算机世界;2007年
7 周颖;王米渠与中医心理学[N];中国中医药报;2006年
8 记者 耿挺;蛋白质功能算出来[N];上海科技报;2007年
9 记者 张云普通讯员 全攀峰 安强强;大庆物探深度域地震资料岩性解释技术获得五大突破[N];中国石油报;2008年
10 本报记者 冯治恩;敢与“雷公”试比高[N];铜川日报;2008年
中国博士学位论文全文数据库 前10条
1 杜小芳;基于CPFR的农产品采购模型研究[D];华中科技大学;2005年
2 刘育明;动态过程数据的多变量统计监控方法研究[D];浙江大学;2006年
3 栾锋;支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D];兰州大学;2006年
4 孙薇;市场条件下抽水蓄能电站效益综合评价及运营模式研究[D];华北电力大学(河北);2007年
5 常群;支持向量机的核方法及其模型选择[D];哈尔滨工业大学;2007年
6 朱燕飞;锌钡白回转窑煅烧过程智能建模研究[D];华南理工大学;2005年
7 田英杰;支持向量回归机及其应用研究[D];中国农业大学;2005年
8 燕忠;基于蚁群优化算法的若干问题的研究[D];东南大学;2005年
9 任东;基于支持向量机的植物病害识别研究[D];吉林大学;2007年
10 杨金芳;支持向量回归在预测控制中的应用研究[D];华北电力大学(河北);2007年
中国硕士学位论文全文数据库 前10条
1 刘艳伟;支持向量机方法在感潮河段洪峰水位预报中的应用[D];浙江大学;2010年
2 杨镭;支持向量机算法设计及在高分辨雷达目标识别中的应用[D];国防科学技术大学;2010年
3 童振;基于支持向量机的电解液成分预测[D];东北大学;2008年
4 聂小芳;模糊粗糙集与支持向量机在煤与瓦斯突出预测中的应用研究[D];辽宁工程技术大学;2009年
5 鄢常亮;基于支持向量机的高炉向凉向热炉况预测研究[D];内蒙古科技大学;2010年
6 韩叙东;基于支持向量机的水电故障分类器的设计与实现[D];东北大学;2008年
7 冯杰;慢时变对象的支持向量机建模与在线校正方法研究[D];东北大学;2009年
8 朱耿峰;支持向量机在冲击地压预测模型中的应用研究[D];山东科技大学;2010年
9 王奇安;基于广泛内核的CVM算法研究及参数C的选择[D];南京航空航天大学;2009年
10 张永新;基于支持向量机和遗传算法相结合的模拟电路故障诊断方法研究[D];东北大学;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026