收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

Beijing (China) Aerosol Characterization Study:Influence of Coal Burning

葛苏  
【摘要】:Coal is expected to surpass petroleum as the world's most used fuel within the next20years. Coal currently generates more than half of U.S. electricity, and this percentage is predicted to increase. Coal usage may grow by a factor of two or three in the next decade. China's main energy source is coal, which provides76%of china's energy. Coal burning is one of major sources of air pollution in China. The burning of100million tons of coal per year in China probably also contributes greatly to the global greenhouse effect. The purpose of this research was to determine the impact of industrial and residential coal burning on air quality in Beijing, China. PM2.5(the aero-diameters of particles collected are smaller than2.5μm) samples were collected at two sites from April30,1989to May16,1989and May20,1989to May14,1990separately. The samples were analyzed by thermal-optical carbon analysis at Oregon Graduate Institute (OGI) for organic (OC) and elemental carbon (EC) and X-ray fluorescence at Desert Research Institute for32elements and components. A variety of different data analysis approaches including multiple linear regression and CMB modeling were used to determine the sources of PM2.5and the role of coal burning in Beijing air pollution. The results indicate that organic and elemental carbon are important components of aerosol throughout the year in Beijing. During the autumn, winter, and spring, combustion appears to be the main source of particulate organic carbon. The eleven sources of aerosol included in honeycomb coal burning when closed mode (HONEYC), residential boilers (BOILER), industrial burning (INDST), power station coal burning (POWER), heavy duty diesel emission (MVHDDS), secondary sulfate, soil, urban dust, plant dust, cement dust, and cooking emissions. Based on the low chi-squared, high R-squared and high fraction of mass accounted for, the results of the CMB on Beijing data can be considered good. In the winter at the west site in Beijing the total coal burning contribution was43%; in the summer it was18%. The average winter HONEYC and BOILER contributions were6%and14%, while the INDST and POWER were10%and13%respectively. MVHDDS is an another important source as its annual average contribution was over30%. The average dust contributions were as high as34%and32%in the spring and summer, but17%and10%in the autumn and winter. Those sources and their contributions were supported by east site results in Beijing. The source profiles of honeycomb and ball coal were compared with piece coal including their smoke, ash and coal. For open-vent burning the source profiles of honeycomb and ball coal are very similar. The EC content of honeycomb coal open-vent burning and ash are much less than that of ball coal. Thus, the coal shape might be an important factor for coal burning pollution control and energy saving. Honeycomb and ball coals and their ashes show less sulfate and chloride and much less EC content than piece coal's ash. That implies that research of honeycomb, ball and other kind of coal may be important for new clean and cheap fuel in power station, industry and residential usage. The source libraries and CMB modeling from the U.S. are good tools for studying other countries' air pollution control strategies. Therefore, this project is an example for other countries' air pollution research.


知网文化
【相似文献】
中国期刊全文数据库 前18条
1 Wenbin Li;Longjuan Kong;Caiyun Chen;Jian Gou;Shaoxiang Sheng;Weifeng Zhang;Hui Li;Lan Chen;Peng Cheng;Kehui Wu;;Experimental realization of honeycomb borophene[J];Science Bulletin;2018年05期
2 曾华东;祝志阳;张吉东;程新路;;Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite:Molecular dynamics simulations using ReaxFF reactive force field[J];Chinese Physics B;2017年05期
3 王中钢;周伟;刘杰夫;;Initial densification strain point's determination of honeycomb structure subjected to out-of-plane compression[J];Journal of Central South University;2017年07期
4 HAN Peng-fei;WANG Zheng-fang;LIU Zhao-ying;;Research on Flow and Heat Transfer Characteristics Inside Spiral Pile-honeycomb Structures with Different Shapes[J];International Journal of Plant Engineering and Management;2017年02期
5 李萌;邓宗全;郭宏伟;刘荣强;丁北辰;;Optimizing crashworthiness design of square honeycomb structure[J];Journal of Central South University;2014年03期
6 ;Fabrication and gas sensing property of honeycomb-like ZnO[J];Chinese Chemical Letters;2008年05期
7 ;Fabrication,structure and compression performance of Inconel 617 superalloy honeycomb[J];Rare Metals;2007年S1期
8 李军平;徐耀;赵宁;魏伟;吴东;孙予罕;;Fabrication and characterization of honeycomb-like superstructures consisting of ZnS nanosheets[J];Transactions of Nonferrous Metals Society of China;2006年S1期
9 邵瀚波;陈国平;何欢;姜金辉;;Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals[J];Chinese Physics B;2018年12期
10 Jie Liu;Bangwu Liu;Sihua Zhong;Jinhu Liu;Yang Xia;Chaobo Li;;A mask-less scheme to generate nano-honeycomb-textured structures for solar cells[J];Chinese Science Bulletin;2014年14期
11 胡晓东;王维科;胡强;雷兴;魏青;刘元正;王继良;;Design of CASSEGRAIN telescope baffles with honeycomb entrance[J];Chinese Optics Letters;2014年07期
12 ;Thermal performance of solar air collector with transparent honeycomb made of glass tube[J];Science in China(Series E:Technological Sciences);2009年08期
13 LI Meng;DENG Zongquan;GUO Hongwei;LIU Rongqiang;DING Beichen;;Crashworthiness Analysis on Alternative Square Honeycomb Structure under Axial Loading[J];Chinese Journal of Mechanical Engineering;2013年04期
14 王宙斐;陈莉;;Monte Carlo study of the antiferromagnetical Ising model on a centred honeycomb lattice[J];Chinese Physics B;2009年05期
15 Qiu Cheng;Guan Zhidong;Jiang Siyuan;Li Zengshan;;A method of determining effective elastic properties of honeycomb cores based on equal strain energy[J];Chinese Journal of Aeronautics;2017年02期
16 ;Light-induced unconventional Landau levels of ultracold fermions in a trilayer honeycomb lattice[J];Science China(Physics,Mechanics & Astronomy);2010年02期
17 高正平,罗青;Surface Reflection Coefficient of Impregnated RAM Honeycomb with Incident Normally Plan Wave to the Side Wall[J];Journal of Electronic Science and Technology of China;2004年01期
18 ;Editors' selection of papers from China's academic journals[J];National Science Review;2018年05期
中国重要会议论文全文数据库 前10条
1 Baozhong Wang;Shan Gao;;Based on the ANSYS double rhombic honeycomb paperboard finite element analysis[A];2013年教育技术与管理科学国际会议论文集[C];2013年
2 魏新庭;李月强;张宪玺;周华伟;单位:;;From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni_3S_2@graphene oxide composite:insight into structure and electrocatalytic properties[A];第五届新型太阳能电池学术研讨会摘要集(纳晶敏化太阳能电池篇)[C];2018年
3 Xiaochen Dong;Wei Huang;;Synthesis of Graphene Films for Nanoelectronic Biosensing[A];中国化学会第29届学术年会摘要集——论坛七:中新青年化学家论坛[C];2014年
4 ;Band Structures of 2D Sonic Crystals with Honeycomb Lattices Based Finite Element Method[A];2011年全国压电和声波理论及器件应用研讨会报告程序册及摘要集[C];2011年
5 Li-Li Liang;Yi Zhao;Xin-Long Ni;Kai Chen;Xin Xiao;Yun-Qian Zhang;Carl Redshaw;Qian-Jiang Zhu;Sai-Feng Xue;Zhu Tao;;Novel Supramolecular Assemblies Based on[CdCl_4]~2-Induced Coordination of Lanthanide Metal Ions to Cucurbit[5]uril[A];全国第十六届大环化学暨第八届超分子化学学术讨论会论文摘要集[C];2012年
6 ;Band Structures and Anomalous Hall Effect in the Honeycomb Optical Lattices[A];第十四届全国量子光学学术报告会报告摘要集[C];2010年
7 Xiao-iie Cheng;Li-Li Liang;Yi Zhao;Xin Xiao;Qian-Jiang Zhu;Sai-Feng Xue;Zhu Tao;;Honeycomb Structures of Metal Ions to Cucurbit[8]uril[A];全国第十六届大环化学暨第八届超分子化学学术讨论会论文摘要集[C];2012年
8 Li-Li Liang;Xin-Long Ni;Yi Zhao;Kai Chen;Xin Xiao;Yun-Qian Zhang;Carl Redshaw;Qian-Jiang Zhu;Sai-Feng Xue;Zhu Tao;;[ZnCl_4]~2-Induced Coordination and Supramolecular Self-Assembly of Lanthanide Metal Ions to Cucurbit[6]uril:Potential Application in Separation of Light Lanthanides[A];全国第十六届大环化学暨第八届超分子化学学术讨论会论文摘要集[C];2012年
9 Li-Li Liang;Yi Zhao;Xin-Long Ni;Kai Chen;Xin Xiao;Yun-Qian Zhang;Carl Redshaw;Qian-Jiang Zhu;Sai-Feng Xue;Zhu Tao;;[CdCl_4]~2-Induced Coordination and Supramolecular Self-Assembly of Lanthanide Metal Ions to Cucurbit[6]uril[A];全国第十六届大环化学暨第八届超分子化学学术讨论会论文摘要集[C];2012年
10 Sahoo MPK;张亚君;王杰;;Magnetic and electronic properties of transition metal atom decorated silicene:A first principles study[A];中国力学大会-2015论文摘要集[C];2015年
中国博士学位论文全文数据库 前5条
1 葛苏;[D];俄勒岗健康医科大学;1992年
2 钱成;二维异孔共价有机框架构筑新策略的研究[D];湖南大学;2018年
3 Javed Rafique;电纺法制备定向纳米材料的研究[D];哈尔滨工业大学;2008年
4 Amir Reza Shah Tahmassebi;[D];浙江大学;2011年
5 波里奥;用于电能质量管理的高效率多电平变换器[D];浙江大学;2008年
中国硕士学位论文全文数据库 前10条
1 郑凯敬;聚甲基丙烯酸缩水甘油酯光交联honeycomb膜的制备[D];北京化工大学;2017年
2 伊晓辉;电纺自组装制备蜂窝状聚合物多孔材料的研究[D];哈尔滨工业大学;2010年
3 王诗涵;从吉尔精力模型出发探讨英汉交传数字口译的笔记方法[D];外交学院;2019年
4 Muhammad Zeeshan Jamal;[D];华南理工大学;2018年
5 杨金花;宋词女性形象的图形—背景认知研究[D];广西大学;2018年
6 薛冬冬;英汉指示路径虚拟位移对比研究[D];华东理工大学;2017年
7 瑞兹(Syed Muhammad Faheem Rizvi);[D];东南大学;2017年
8 徐亚婕;从吉尔精力负荷模式看同传数字口译对策[D];上海外国语大学;2018年
9 邓宇飞;静态法制备高度有序耐溶剂的Honeycomb薄膜[D];北京化工大学;2016年
10 Kathawach Satianpakiranakorn;[D];哈尔滨工程大学;2011年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978