收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

二叠—三叠纪牙形石生物相生物更替和相关界线研究

姚建新  
【摘要】: The Upper Permian and Lower Triassic arewell developed in South China and Tibet. Basedon the researches in the Late Permian-EarlyTriassic strata and fossils of the six sections(the Changxing section, the Shangsi section, theMaoritang section, the Hechuan section, thechaotian section, the Selong section), the conoconodont evolution, the conodont biofacies andprovinces, the quantitative conodont biostrati-graphy, the biotic alternation and the Permian-Triassic boundary have been studied in thispaper. The following remarks are worth mentioning. 1. According to the conodont evolution andtheir distribution in Permian and Triassic inthe six sections, eleven conodont zones havebeen divided (Fig. 1). They are as follows (inascending order). (1) Gondolella subcarinata subcarinata—G.subcarinata elongata assemblage zone. (2) Gondolella subcarinata changxingensis-G.deflecta assemblage zone. (3) Hindeodus parvus zone. (4) Isarcicella isarcica zone. (5) Gondolella carinata zone. (6) Neospathodus dieneri zone. (7) Neospathodus cristagalli zone. 8) Neospathodus waageni zone. (9) Parachirognathus geiseri-Pachycladinaobliqua assemblage zone. (10) Neospathodus homeri zone. (11) Neospathodus timorensis zone. 2. as a result of detailed researches inPermian-Triassic conodont paleocology,lithological characterisics and theirvertical and horizontal distributions, werecognize five conodont biofacies (Fig. 2, Fig.3): Hindeodus facies (Tidal-Flat-Lagoon),Pachycladina-Parachirognathus facies (Subtidal),Gondolella-Hindeodus facies (Inner Shelf),Gondolella-Neospathodus (Outer Shelf), Gondolella-Xaniognathus facies (Basinal). 3. Based on the presence of the conodontbiofacies in South China and Himalayan and onthe Stratigraphic range and the geographicdistribution of their elements, three conodont provinces (Himalayan province, Upper YangtzeProvince, Lower Yangtze Province) are recognizedin Upper Permian and Lower Triassic (Fig. 4).The geographic characteristics, the changesof the conodont biofacies, the relative dif-ferences or similarities of the three ConodontProvinces are discussed in detail. 4. According to the changes represented bythe conodont biofacies in Late Permian-EarlyTriassic, two Transgression-Regression Cyclesare recognized in South China and Himalayan(Fig. 3): The first Transgression-RegessionCycle, early Changxingian to early LateCriesbachian and the second TransgrssionRegression Cycle, late Late Criesbachian tolate Dienerian. 5. A continuous disappearance of thepalaeozoic faunal elements took place withinthe Upper Permian and the extinction rate ofold elements was much higher than the appearancerate of the new elements, in such a shortgeologic time span. Therefore, the extinctionof the organisms at the Permian-Triassic alter-nation is the greatest extinction in the historyof life. Fusulinids, Tetracorals, Tabulata,Trilabites, Non-fusuline foraminifers, Ammonoids,Brachiopods and Conodonts etc. extincted ordeclined rapidly in the end of the Changxingian.Only Glomospira, Geinitzina, Palaeolextularia,Crurithyris, Pseudogastrioceras, Gondolella etc. survived into the Griesbachian or higherlevel. 6. After the extinction, biotic evolutionwas in a desolated period with a few survivorsof the Changxingian in Early Griesbachian.Faunas have low diversity and abundancy. OnlyOtoceras, Hypophiceras, Glyptophiceras,Towapteria began to appear in the period.In the Late Griesbachian, the faunas representedby Ophiceras, Claraia, Isarcicella began toflourish and grow radially (Fig. 5). 7. A detailed research has revealed thatsome geological events such as crustal uplift,reginal regression, volcanic explosion, reversalof magnetic poles have happened during the latePermian. The geological events produced thecrises in the ecosystems and made a massextinction of faunas. In so far, the geologicalevents play an important role in phylogenesis.They have their effect in accelerating, inpushing forward the evolution. According to thefact that the biotic extinction and flourishare in keeping with the Transgression-RegressionCycles, we deem that the eustatic change of thesea level may be one of the important factorsin the Permian-Triassic biotic alternation. 8. In recent years, a lot of work have beendone on the division of the Permian-Triassic boundary and brought forth four concludingopinions: (1) the base of the Otoceras bed.(2) the base of the Hindeodus parvus zone,(3) the base of the Ophiceras bed, (4) thebase of the Gyronites. In essence, as weconsider, the first boundary is an event-stratigraphy boundary, other boundaries arebiostratigraphical boundaries. The reasonengendered the four boundaries is differentfrom the standard and the priciple definedboundary. 9. Based on the distribution of conodonts,Ammonoids and Bivalves, and using the method ofa graphic correlation to research in the bound-a(?)es of the base of the Changxing Formation,the base of the Otoceras bed, the base of theHindeodus parvus zone, the base of the Ophicerasbad in the ten sections (the Changxing section,the Shangsi section, the Maoritang section, theChaotian section, the Huaying section, theLiangfengya section, the Hechuan section, theXixiang section, the Selong section and theKashmir section) (Fig. 6, Fig. 7, Tab. 2, Tab.5, Tab. 4), in which, the Changxing section ischosen as Standard Reference Section, thefollowing results have been gainned: (1) thethree boundaries of the base of the Otocerasbed, the base of the Hindeodus parvus zone andthe base of the Ophiceras bed are separatelyconcordant except the Selong section and the Chaotian section. (2) except the base of theChangxing Formation, other boundaries inChaotian section and the four boundaries inthe Selong section are not coincident with theboundaries in the Changxing section, (3)According to the conodont distribution, exceptthe Chaotian section, the base of the ChangxingFormation in ether sections are not coincidentwith the base in the Changxing section. (Tab. 5). 10. By the analysis for the boundaries, wedeem that it is suitable to put the Permian-Triassic boundary at the base of the Ophicerasbed. This boundary marks the beginning of a newperiod characterized by the emergence and radilgrowth of new biologic groups. 11. Based on the research in the conodentbiofacies in South China and Tibet, it seemsthat South Tibet is a good area for reserarchin the Permian-Triassic boundary, because theInner Shelf was maintained from the EarlyGriesbachian to Late Griesbashian.


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 郭伟,董熙平,曾筱淳,赵乐;最早真牙形石分子的比较组织学研究[J];北京大学学报(自然科学版);2005年02期
2 郭伟,董熙平,曾筱淳,赵乐;辽宁晚寒武世一些原始真牙形石的组织学研究[J];自然科学进展;2005年01期
3 武桂春,姚建新,纪占胜;鲁西地区寒武纪原始真牙形石分类方案的探讨[J];地质学报;2004年03期
4 ;关于牙形石和早期脊椎动物[J];微体古生物学报;1997年01期
5 安泰庠,梅仕龙;试论寒武纪牙形石演化[J];古生物学报;1994年05期
6 王钢;贵州奥陶系牙形石序列[J];贵州地质;1990年04期
7 毛家仁;;贵州北部下奥陶统牙形石生物地层[J];贵州工学院学报;1992年03期
8 史立群;;牙形石:一个绝灭的脊椎动物类群[J];化石;1993年02期
9 徐桂荣;“牙形石”研究入门必读[J];地球科学;1985年02期
10 丁梅华;牙形石的生物地层学意义[J];中国地质;1985年02期
11 张又秋;一种新的牙形石分析方法——塔式分析法[J];华东石油学院学报(自然科学版);1985年01期
12 安泰庠;丁连生;;安徽和县奥陶纪牙形石生物地层的研究[J];地质论评;1985年01期
13 丁梅华;国外牙形石研究现状[J];地质科技情报;1986年04期
14 周希云;贵州志留纪牙形石的分布与沉积环境关系的初步研究[J];贵州地质;1986年04期
15 董致中;;云南宁蒗泸沽湖畔石炭系牙形石及碳酸盐沉积相[J];云南地质;1987年01期
16 李晓池;丁梅华;;华南上二叠统长兴阶有孔虫与牙形石带(组合)的对比分析[J];地质论评;1987年05期
17 王安德;邹乐君;;数理统计在牙形石研究中的应用[J];科技通报;1987年03期
18 卢宏金;;桂东南晚泥盆世—早石炭世牙形石的发现[J];中国区域地质;1987年03期
19 David L.Clark;赖旭龙;;牙形石的绝灭[J];基础地质译丛;1987年01期
20 包德宪;;牙形类漫谈[J];化石;1987年03期
中国重要会议论文全文数据库 前10条
1 肖继南;翁月新;贾克瑞;;准噶尔盆地含牙形石地层[A];中国古生物学会微体学分会第十六次学术年会、中国古生物学会化石藻类专业委员会第十七次学术年会暨和政化石论坛论文摘要集[C];2016年
2 赵松银;;山西沁水盆地晚石炭世的一些牙形石[A];中国地质科学院天津地质矿产研究所文集(4)[C];1982年
3 邱洪荣;;新疆尉犁县中奥陶世的几个北大西洋型牙形石[A];中国地质科学院地质研究所文集(9)[C];1984年
4 赵松银;万世禄;;唐山上石炭统开平组牙形石的发现及其意义[A];中国地质科学院天津地质矿产研究所文集(8)[C];1984年
5 毛力;田传荣;;西藏林周县麦隆岗组顶部的晚三叠世牙形石[A];中国地质科学院文集(17)[C];1987年
6 邱洪荣;周兴瑞;赵起超;朱茵德;冯锦芬;;北京大兴钻井下马家沟组牙形石[A];中国地质科学院地质研究所文集(17)[C];1988年
7 杨志华;景秀春;王训练;周洪瑞;任卉;;内蒙古大佘太地区晚奥陶世牙形石初步研究[A];中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集[C];2018年
8 喻洪津;;藏北申扎地区中—晚志留世牙形石生物地层[A];青藏高原地质文集(16)——地层·古生物——地质矿产部青藏高原地质科学第二次讨论会论文集(一)[C];1983年
9 杨守仁;郝维城;江大勇;;中国三叠纪牙形石的古生物地理分区[A];中国古生物学会第21届学术年会论文摘要集[C];2001年
10 包德宪;王元顺;;山西沁水盆地中奥陶统牙形石[A];地层古生物论文集(第二十二辑)[C];1988年
中国博士学位论文全文数据库 前10条
1 梁蕾;南盘江地区早三叠世牙形石生物地层及华南早三叠世牙形石时空演变[D];中国地质大学;2017年
2 吕政艺;湖北恩施与克什米尔地区早三叠世牙形石生物地层研究[D];中国地质大学;2018年
3 张宁;广西板城晚泥盆世—早石炭世硅质岩系放射虫演化及其对全球事件的响应[D];中国地质大学;2004年
4 姚建新;二叠—三叠纪牙形石生物相生物更替和相关界线研究[D];中国地质科学院;1990年
5 江海水;华南二叠—三叠纪之交牙形石演化研究[D];中国地质大学;2008年
6 阎春波;南盘江地区早、中三叠世牙形石生物地层研究[D];中国地质大学;2013年
7 景秀春;塔里木盆地奥陶纪台地相区牙形石及寒武—奥陶系界线[D];中国地质大学(北京);2009年
8 张再天;滇黔地区拉丁期—卡尼期牙形石生物地层格架及沉积环境演变[D];中国地质大学;2016年
9 陈剑波;安徽巢湖地区早三叠世古海洋环境地球化学示踪指标的综合研究[D];中国地质大学;2015年
10 王丽娜;华南与冈瓦纳地区二叠—三叠纪之交牙形石对比研究[D];中国地质大学;2016年
中国硕士学位论文全文数据库 前10条
1 刘和;冈底斯南缘雪乡地区麦隆岗组牙形石生物地层研究[D];成都理工大学;2018年
2 李娜;广西宜州拉利地区晚泥盆世牙形石生物地层[D];中国地质大学(北京);2018年
3 房强;川东北瓜德鲁普统与乐平统牙形石(刺)动物群及其生物地层研究[D];中国地质大学(北京);2012年
4 韩丹丹;广西大新榄圩地区泥盆纪牙形石生物地层[D];中国地质大学(北京);2017年
5 吕贝贝;广西隆林德峨地区晚古生代牙形石生物地层[D];中国地质大学(北京);2017年
6 丁菱;河南内乡上奥陶统石燕河组牙形石生物地层及生物相研究[D];中国地质大学(北京);2017年
7 王婧雅;川西地区中二叠统茅口组牙形石及其生物地层[D];中国地质大学(北京);2014年
8 杨志华;滇西保山地区上泥盆统牙形石及其生物地层研究[D];中国地质大学(北京);2016年
9 杨文瑞;冀东油田南堡凹陷奥陶系牙形石生物地层研究[D];中国地质大学(北京);2009年
10 孙浩;鄂尔多斯盆地东缘奥陶系牙形石及其生物地层[D];中国地质大学(北京);2013年
中国重要报纸全文数据库 前2条
1 刘曙甲 刘志伟 曹南燕;2.5亿年前地球曾出现致命高温[N];科技日报;2012年
2 曹南燕;2.5亿年前高温导致赤道生态系坍塌[N];中国国土资源报;2012年
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978