《中国人民解放军军事医学科学院》 2000年
收藏 | 手机打开


【摘要】:In order to explore the evidence of transient neuronal plasticity observed in human sensorimotor cortex during development of learning, the mechanisms of activity-dependent synaptic modification in cultured cortical sensorimotor neurons in rats were studied. Long-term potentiation (LTP) is an activity-dependent strengthening of synaptic efficacy that is considered to be one of indexes of learning and memory in the present study. Voltage pulse, as a model of repetitive electrical stimulation, was applied to test the relationship between repetitive electrical activity and a persistent change of synaptic efficacy. NMDA (N-methyl-D-aspartate) was administrated to cells to examine its dose-dependent effects on the agonist-induced synaptic transmission in cultured cortical sensorimotor neurons. Patch clamp techniques with whole cell recording mode was performed to assess the effects of depolarizing pulses and changing concentrations of NMDA on spontaneous neuronal activity.In the present study, the voltage-gated potassium and sodium channels of the cultured sensorimotor neurons were activated by step depolarization and demonstrated their current and voltage relations. The slow bursting rhythm discharged from cultured sensorimotor neurons showed spontaneous neuronal activity alternating with quiet interval.At very low density cultured condition, the cultured cortical sensorimotor neurons have their basic properties of amplitude, rise time, decay time and frequency of sEPSCs. Similar as the findings of cultured hippocampal neurons studies, the plot of amplitude histogram of the sEPSCs obtained from cortical sensorimotor neurons during the control period showed that the distribution was skewed toward larger events that indicates a typical glutamatergic distribution. In the repetitive stimulation experiments, voltage pulse successfully induced synaptic response of sEPSCs and the effect was highly reproducible (95%, n=12). Predominantly, the rapid response increased significantly in the averaged frequency (typically around 2-4 folds) accompanying a change in averaged amplitude, of sEPSCs. The enhanced EPSCs frequency response generally maintained within 30-40 min occurring in most cells. In addition, voltage pulse induced potentiation also involved increase in spike frequency in some neurons (around 8-10 folds). To examine the mechanism of induction and the expression of EPSCs frequency response, it appeared, under conditions of our experiments, to imply an increase of presynaptic sensitivity that may be due in part, to the turning on of silent synapses. However, the change of EPSCs amplitude indicating this switch might reflect an increase in the postsynaptic sensitivity of non-NMDA or NMDA receptors at previously active synapses, or alternatively, it could reflect the turning on of release sites that were functionally silent prior to the voltage pulsing. Nevertheless, we cannot exclude the possibility that some fraction of potentiation of EPSCs is postsynaptic which requires an increase in postsynaptic Ca2+. With respect to spike frequency response, the possible mechanism might be involved an alteration of the voltage-gated Na+ channels that may account for the change in synaptic strength.In agreement of recent studies of cultured hippocampal neurons, voltage pulse-induced potentiation in cultured cortical sensorimotor neurons is transient suggesting that sustained potentiation may require the combined some additional components, such as activation of NMDA and metabotropic receptors. Thus, the present findings are perhaps more pertinent to the early short-term potentiation that occurs following repetitive stimulation. Consistent with the results of the study in hippocampus, the NMDA application to bath solution did potentiate synaptic transmission in cultured sensorimotor neurons in vitro. The present results demonstrated that NMDA application to bath at both concentration of 500 uM and 1 mM was sufficient to cause NMDA receptor activation. This agonist-induced potentiation shared many features with LTP that exhibited a large increase in spike frequency, EPSCs amplitude, as well as in the number of events of sEPSCs. The analysis of time, amplitude and frequency domain data indicated that there was a significant difference between two concentrations. The evidence suggests that the manner of the synaptic transmission via NMDA receptor is concentration-dependent. It is likely that the concentration is an important factor during the critical period of plasticity that is relevant to the interpretation of the phenomena observed in human motor cortex during learning. The present results provided information that the enhancement of synaptic transmission might be influenced by the degree of NMDA receptor activation, and may be dependent on the complex temporal and spatial relationships of afferent synaptic activity onto a given postsynaptic cell as well. Furthermore, NMDA receptor function may have profound effects on the synaptic modification elicited by a fixed pattern of synaptic activity. It may be important when modulatory neurotransmitter systems are active during different behavioral states.Although the present experimental designs were not very precise and the present results are preliminary, the findings, at least to some extent, provide insight into understanding the cellular mechanism of plasticity observed in human motor cortex during different learning stages.

中国期刊全文数据库 前1条
1 刘青松,何湘平,刘传缋;乙酰胆碱对培养大鼠皮层神经元兴奋性及抑制性突触电流的相反作用[J];生理学报;1996年04期
中国期刊全文数据库 前4条
1 李爱香;王建荔;;东莨菪碱用于乳腺癌术后硬膜外自控镇痛的临床研究[J];中国医学创新;2010年20期
2 庞涛;许铁;;M胆碱受体阻滞剂对脑缺血再灌注损伤的保护机制[J];徐州医学院学报;2006年06期
3 占成业,邓普珍;山莨菪碱对家兔急性全脑缺血再灌注期间兴奋性氨基酸释放及生存状况的影响[J];中国急救医学;1999年03期
4 黄孝玢,蒋锡仕,黎晓敏;中枢乙酰胆碱受体及其功能研究进展[J];四川畜牧兽医学院学报;1997年02期
中国期刊全文数据库 前10条
1 朱旭红;张萍淑;程赞赞;孟燕;张利平;元小冬;;突触可塑性相关蛋白及其与临床疾病的关系[J];华北理工大学学报(医学版);2017年03期
2 范鸣玥;吕佩源;;氯化锂对突触可塑性的影响[J];国际神经病学神经外科学杂志;2014年05期
3 白石;刘涛;孔淑珍;刘龙波;;运动对脑组织突触可塑性的影响[J];咸阳师范学院学报;2013年02期
4 徐春;章晓辉;;学习和记忆的突触模型:长时程突触可塑性[J];自然杂志;2009年03期
5 陈燕;;神经元的突触可塑性与学习和记忆[J];生物化学与生物物理进展;2008年06期
6 孟玮;李东风;;短时程突触可塑性研究概况[J];生物物理学报;2006年05期
7 陈波;袁琼兰;;胶质细胞源性神经营养因子与突触可塑性[J];四川解剖学杂志;2006年04期
8 沈方,张晓明,朱晞;学习记忆与突触可塑性及相关物质的研究[J];解剖学杂志;2004年05期
9 张强,叶桂兰;神经突触可塑性(英文)[J];神经疾病与精神卫生;2002年02期
10 张晨曦;陈艳;仪明东;朱颖;李腾飞;刘露涛;王来源;解令海;黄维;;基于忆阻器模拟的突触可塑性的研究进展[J];中国科学:信息科学;2018年02期
中国重要会议论文全文数据库 前10条
1 刘志娟;吕佩源;;脑源性神经营养因子在突触可塑性中的作用[A];第四届全国痴呆与认知障碍学术研讨会及高级讲授班论文汇编[C];2015年
2 张红慧;王青云;;突触可塑性影响下的第一类神经元网络的同步分析与放电转迁[A];中国力学大会——2013论文摘要集[C];2013年
3 马丽丽;陈晓红;;突触可塑性与癫痫[A];中华医学会第十七次全国神经病学学术会议论文汇编(下)[C];2014年
4 范鸣玥;吕佩源;;氯化锂对突触可塑性的影响[A];中华医学会第十七次全国神经病学学术会议论文汇编(上)[C];2014年
5 雷鸣;张丽敏;岑娈;莫明树;魏磊;肖友生;瞿少刚;徐评议;;谷氨酸能/氨基丁酸能失衡在可溶性Aβ致突触可塑性损害中的机制研究[A];中华医学会第十八次全国神经病学学术会议论文汇编(下)[C];2015年
6 雍政;颜玲娣;宫泽辉;;噻吩诺啡对突触可塑性的影响[A];中国药理学会第十次全国学术会议专刊[C];2009年
7 李澎涛;潘彦舒;黄启福;贾旭;严京;王永炎;;解毒通络方对脑缺血损伤后海马区突触可塑性的影响[A];第四次全国中西医结合神经系统疾病学术研讨会论文集[C];2002年
8 张红慧;王青云;;婴儿癫痫疾病动力学建模分析[A];中国力学大会-2015论文摘要集[C];2015年
9 胡前胜;董胜璋;陈学敏;;神经细胞粘附分子与学习记忆[A];2003年全国免疫毒理学术交流会论文集[C];2003年
10 苏立达;孙承龙;沈颖;胡颖红;;谷氨酸转运体和酒精对小脑平行纤维-浦肯野细胞突触可塑性长时程抑制的影响(英文)[A];2009年浙江省神经外科学术年会论文汇编[C];2009年
中国重要报纸全文数据库 前2条
1 健康时报记者 吕霖;测脑龄不如多动脑![N];健康时报;2017年
2 实习生:张洁 记者 :王春;探秘人类灵性家园[N];科技日报;2006年
中国博士学位论文全文数据库 前10条
1 马婧;αCaMKⅡ在内侧前额叶相关认知功能和突触可塑性中的作用及机制研究[D];华东师范大学;2016年
2 唐勇;电针促进帕金森小鼠多巴胺神经元突触可塑性的细胞分子机制[D];成都中医药大学;2004年
3 庄平;培养大脑皮层感觉运动神经元活动依赖突触可塑性机制的研究[D];中国人民解放军军事医学科学院;2000年
4 向小军;应激和急性吗啡暴露对不同年龄大鼠海马CA1区突触可塑性及空间记忆的影响[D];中南大学;2004年
5 赵明瑞;(-)黄皮酰胺对突触可塑性的影响及其细胞和分子机制[D];中国协和医科大学;1999年
6 杨建立;应激对大鼠海马CA1区突触可塑性及学习记忆影响的研究[D];中南大学;2006年
7 王伟;钾离子—氯离子共转运体2(KCC2)与突触可塑性的研究[D];中国科学技术大学;2006年
8 刘路英;组胺酸脱羧酶基因敲除小鼠学习记忆和海马CA1区突触可塑性的改变[D];浙江大学;2007年
9 陈伟恒;Clioquinol与Vitamin B12对慢性铅引起的突触可塑性损伤的协同修复作用[D];中国科学技术大学;2007年
10 周琳;二苯乙烯苷对阿尔茨海默病大鼠突触可塑性损伤的保护机制研究[D];中南大学;2007年
中国硕士学位论文全文数据库 前10条
1 薛曼;α_5-GABA_A受体介导的持久性抑制在痛觉传递与突触可塑性中的作用[D];兰州大学;2017年
2 朱柳帅;Sigma-1受体对成瘾动物海马CA1突触可塑性影响的研究[D];苏州大学;2018年
3 揭杰;博尔纳病病毒诱导的H3K9乙酰化水平下降所致认知障碍的机制研究[D];重庆医科大学;2018年
4 刘海瑶;2-脱氧-D-葡萄糖逆转硫化氢对术后老年大鼠海马突触可塑性障碍的拮抗作用[D];南华大学;2018年
5 魏乐;海马Warburg效应通过改善海马突触可塑性介导硫化氢的抗抑郁作用[D];南华大学;2018年
6 王大珅;基于突触可塑性的脉冲神经网络构建及仿真研究[D];河北工业大学;2016年
7 吕福成;双层过渡金属氧化物异质结忆阻器及其阻变机理研究[D];华中科技大学;2017年
8 高月;SNX27调节突触传导和突触可塑性[D];厦门大学;2017年
9 蔡宣敬;基于忆阻器模拟神经突触的研究[D];福州大学;2016年
10 沈非儿;电针下调神经源性一氧化氮合酶影响海马突触可塑性的抗抑郁实验研究[D];南京中医药大学;2018年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026