收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

铁路货运运营风险数据知识化方法研究

彭丽宇  
【摘要】:随着我国经济的快速发展,带动铁路运输业的不断创新和改革,技术复杂程度不断加强,既有的安全管理模式面临严峻挑战。采用传统铁路货运运营风险管理方式分析事故形成的原因一般是以单一线性关系为基础,即风险源与事故之间,对已发生事故的风险源进行有效识别和控制,而无法对潜在风险源进行辨识和关联,做不到精准的风险管理,无法满足铁路货运运营风险管理的智能化服务,也无法通过实时、动态的数据挖掘,实现信息化和知识化的增值的需求。因此,研究铁路货运运营风险数据的知识化方法,对进一步精准挖掘风险源,提高铁路货运运营风险管理水平,具有重要意义。本文针对铁路货运运营风险事故特点,基于本体论、粗糙集和人工神经网络等方法探究了铁路货运运营风险结构化数据和非结构化数据的知识化问题,建立风险数据知识化与情景集成知识库,为铁路货运运营风险数据知识化与管理提供了借鉴。论文的主要研究内容如下。(1)铁路货运运营风险影响因素指标体系建立与关键影响因素筛选从人、装备、环境、管理角度建立铁路货运运营风险影响因素指标体系,选取危险源、故障与事故数据作为条件属性集,将相应的风险等级信息作为决策属性集,构建基于人、装备、环境、管理的铁路货运运营风险影响因素知识系统,运用粗糙集筛选影响铁路货运安全的关键风险因素,计算并对比分析各关键风险因素的权重差异。(2)铁路货运运营风险管理本体构建与关联模式识别以铁路事故案例非结构化数据为基础,对事故进行描述与解析,挖掘铁路货运运营风险源,解析致因机理,选取若干事故致因复杂、事故级别高的典型事故案例完成情景实例的知识提取,建立基于事故情景的事故-风险本体模型,并对铁路货运运营风险本体进行形式化表示,从而识别风险关联模式,提出了铁路非结构数据的知识化方法。(3)提出铁路货运设备风险管理数据知识化方法针对铁路设备状态检测结构化数据知识化现状,提出基于神经网络的铁路货运设备数据知识化方法,并以轨道不平顺为例,利用BP神经网络对其分周期进行预测,并运用轨距、左轨向、右轨向、左高低、右高低、三角坑、水平等七项检测数据对模型有效性进行了验证。(4)铁路货运运营风险数据知识化与情景知识集成将铁路的风险影响指标体系与事故-风险本体中的风险源相关概念相对应,完成铁路货运运营风险影响指标权重的知识化。确定铁路货运运营风险影响指标包括人员对应、管理对应、环境对应与装备对应4组映射规则。以轨道平顺测量数据的挖掘与计算过程为例,将风险-事故本体的概念部分进行相应更新,将新生本体概念对应到风险、设备、基础设备、固定设备、轨道与线路下,使用Protege工具,在风险-事故本体中建立新的概念,构建新生本体图。依据风险源的类型,将其分为人员、设备、环境、管理四类进行管理。对于关联关系的提取,依照事故情景要素和风险、事故成因,将风险源之间成组关联关系分析定义为:升级、影响、导致三种风险成组关联关系。通过分析事故风险源及对应事故情景中的参与行为,寻找二者对应关系,将二者关联起来,形成由参与行为到风险成组的动态推理链条,建立提取、产生、催化、处理异常行为-风险链的规则认定,形成推理映射逻辑表。本文的主要创新点如下:(1)提出了铁路货运运营风险数据知识化方法。基于事故情景的致因机理解析,识别风险源并挖掘影响铁路货运运营安全风险因素之间的关联规则,基于风险关联知识构建事故-风险本体模型,研究铁路货运运营风险本体知识推理与更新机制。(2)构建了铁路货运运营风险本体模型。以基于本体的铁路货运运营风险模型结构化描述与推理方法为基础,挖掘并提出铁路货运运营风险关联知识推理机制,建立基于管理数据和设备数据的风险识别方法。运用铁路货运运营事故情景的本体描述,对不同类型铁路货运运营风险进行本体集成,实现了铁路货运运营风险数据的知识化。(3)提出了铁路货运运营风险数据的知识建模和推理研究方法。建立铁路货运运营风险影响因素指标体系,构建基于人、装备、环境、管理的铁路货运运营风险影响因素知识系统,运用粗糙集筛选了影响铁路货运安全的关键风险因素。通过铁路货运事故情景分析建模,分析、分解各个事故的成因链与事故链,探究非结构化铁路货运运营风险数据和事故数据间相互作用关系。


知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978