低动力作用机车转向架理论分析及应用研究
【摘要】:
随着列车的运行速度不断提高,轮轨动态相互作用越来越强,因此,设计低动力作用机车转向架是机车设计中的关键之一。本文基于车辆一轨道耦合动力学理论,借助于TTISIM仿真软件,围绕机车转向架低动力作用设计技术,进行理论分析和工程应用研究。首先建立了机车—轨道耦合动力学模型,该模型详细考虑了牵引电机(驱动系统)的悬挂特性,牵引电机具有5个方向运动自由度和空心轴具有3个方向自由度,且针对机车转向架各类横向非线性止挡结构,建立了符合其运动关系及特性的非线性止挡分析模型,基于SS7系列机车动力学性能现场试验结果,对机车—轨道耦合动力学模型及其理论计算结果进行了验证分析,结果表明,机车运行安全性指标、舒适性指标及各部件的动荷特性等理论计算值与试验测试结果均吻合较好。其次,计算研究了机车系统主要结构及悬挂参数对轮轨垂向动力性能的影响及规律,并提出了机车轮轨垂向低动力作用设计原理及设计技术,主要有:减小簧下质量可以有效的降低轮轨动力作用,而簧间质量和构架惯量对轮轨系统的垂向动力性能影响较小,低动力设计时可以忽略其影响;必须从轮轨大系统的角度对一系减振装置的阻尼系数进行优化;低动力作用的机车车轮踏面宜采用磨耗型。然后,综合研究了机车参数对轮轨橫向相互作用性能的影响,借此提出减轻机车轮轨横向动力作用的技术措施,主要有:一系水平定位刚度对轮轨横向动力作用影响较大,设计时还需兼顾机车的运动稳定性;二系纵向与横向刚度值、横向减振器阻尼等参数对轮轨横向相互作用影响很小,在进行低动力转向架设计时,可以忽略参数的影响;选取较小簧下质量,将使轮轨横向相互作用得到显著的降低。最后,结合工程实际,对低动力作用设计技术在时速160km提速机车和时速200km高速机车转向架设计中的应用情况进行了详细的论述,实践运用效果表明,本文提出的低动力设计技术可以解决工程中相关技术难题,能够满足设计需求,且效果良好。图76幅,表25个,参考文献128篇。