收藏本站
收藏 | 手机打开
二维码
手机客户端打开本文

平板件电磁成形的质量保证技术的研究

初红艳  
【摘要】: 电磁成形是金属在强脉冲磁场中受力而发生塑性变形的一种高能高速的成形方法。其优点如下:成形时没有物理接触,可以在成形或装配操作前进行工件的抛光或研磨;成形过程中没有静态力,可以采用相对较轻的结构支撑模具;电磁脉冲载荷时间可以达到微秒的精度,强度可以电力控制达到很高的精度;成形过程不产生摩擦,不需要润滑剂,操作之后不需清理工件;成形速率高导致材料成形性的提高,对铝合金等强度高、成形性差的材料成形变得非常有利。 采用电磁成形工艺进行铝合金件的成形,由其代替钢材用于汽车车体结构和其他零件的成形,可使汽车减重达30%,进而减少燃油消耗和温室气体CO2及其他有害气体的排放。因而电磁成形工艺应用于汽车领域是其重要的发展前景。 本文的主要研究工作有:在对国内外发展状况进行调研的基础上,将平板件的电磁成形作为研究对象,采用理论分析、实验研究、有限元仿真等方法,探索影响成形质量的主要工艺因素,如脉冲电流频率,成形电压,模具,板料厚度等对成形的影响,获得进行平板件电磁成形工艺设计所需的成形线圈、成形设备电路参数、成形电压、模具等的设计方法,对于保证成形件的质量,推动其工业化应用具有重要的意义。将其应用于复合成形工艺(普通冲压成形+电磁成形),将使汽车车身铝合金件的复合成形成为非常有前途的新的工艺方法。 本文从密绕导线平板线圈的磁感应强度分布入手,分析了平板件上的电磁力分布特点,并在此基础上提出了在平板件电磁成形时存在一个线圈的最小尺寸的概念,此时工件边缘处所受磁压强恰好为0。若线圈尺寸小于该尺寸,则工件边缘处所受磁压强垂直向上,不利于工件的变形。并分别用二分法和复合形法进行圆形线圈和椭圆线圈最小尺寸的计算。采用盒形模具和小孔模具,分别用圆形线圈和椭圆线圈进行板料的成形,得出了两种线圈的适用情况:对于长形工件,采用椭圆线圈要优于圆形线圈;对中心部位变形要求较高的工件,应尽可能采用圆形线圈。这对于电磁成形工艺设计时选择线圈形状、确定线圈尺寸具有一定的指导意义。 本文详细讨论和阐述了平板件电磁自由成形及有模成形实验,根据实验结果分析了成形电压、模具、板料厚度等对变形的影响,初步得出了电磁成形时平板件的变形响应规律:对于自由成形,加载时间内板料的变形很小,大部分 WP=5 变形发生在加载结束后的惯性阶段;对于有模成形,板料与模具底部高速撞击后将产生反向运动,其结果是工件的底部形状可能为平的,也可能为内凹的。 通过对实验结果的统计分析,得出了工件最大变形高度与成形电压之间为线性关系的结论,并且提出可以用二次多项式曲线来逼近工件的变形曲线。因此可以实现根据所需的工件最大变形高度来确定成形电压,并预知工件的近似变形曲线。 从趋肤效应的角度出发,分析了最大变形高度与板料厚度的关系,得出在其他条件相同的情况下,板料厚度等于趋肤深度时,设备能量利用率最高,工件变形高度最大的结论。并分析了可以通过改变线圈导线的材料、规格、线圈的匝数、匝间距等来获得最高的设备能量利用率。这对于电磁成形工艺设计时线圈的设计有一定的指导意义。 本文在若干合理简化的基础上用ANSYS/LS-DANA对电磁成形过程进行了有限元仿真,利用仿真结果分析了板料自由成形、有模成形时的变形模式,分析了脉冲电流频率对平板件电磁成形的影响:自由成形时,随脉冲电流频率的减小,工件的最大变形高度先是增大,然后减小,当脉冲电流频率减小到一定程度时,工件的最终变形程度差别不大;有模成形时,在凹模深度相同的情况下,脉冲电流频率越大,工件的反向变形程度越大,随脉冲电流频率的减小,工件底部的贴模情况逐渐变好,直至没有反向变形,工件底部为平的,而且当脉冲电流频率减小到一定程度时,工件的变形曲线趋于相同。文中还分析了载荷幅值对平板件电磁成形的影响:载荷幅值对板料的变形过程没有影响,但是会影响工件的最终变形程度。在其他条件相同的情况下,对于自由成形,载荷幅值越大,工件的变形程度越大;对于有模成形,加载时间较短时,载荷越大,工件的反向变形程度越大;加载时间中等时,工件底部内凹,载荷幅值越小,内凹程度越大,载荷幅值越大,工件侧壁靠模程度越高;加载时间较长时,工件底部近似为平的,载荷幅值越大,工件侧壁靠模程度越高。这对于电磁成形工艺设计时选择最佳的脉冲电流频率、载荷幅值以获得所需的变形曲线具有重要的意义。


知网文化
【相似文献】
中国期刊全文数据库 前20条
1 胡婷婷;胡建华;程然;黄尚宇;;平板电磁成形中匀压力线圈失效分析[J];武汉理工大学学报;2011年06期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
11 ;[J];;年期
12 ;[J];;年期
13 ;[J];;年期
14 ;[J];;年期
15 ;[J];;年期
16 ;[J];;年期
17 ;[J];;年期
18 ;[J];;年期
19 ;[J];;年期
20 ;[J];;年期
中国重要会议论文全文数据库 前9条
1 邱立;李亮;吕以亮;;脉冲强磁场下的电磁成形技术[A];2011中国材料研讨会论文摘要集[C];2011年
2 李春峰;于海平;赵志衡;;电磁成形工艺应用现状[A];首届七省区市机械工程学会科技论坛论文集[C];2005年
3 马瑞伍;肖小亭;;电磁成形技术发展简介[A];2005年中国机械工程学会年会论文集[C];2005年
4 刘全胜;;强磁脉冲下板材的塑性变形功与断裂模式的研究[A];江苏省机械工程学会第六次会员代表大会论文集[C];2002年
5 于海平;李春峰;江洪伟;赵志衡;邓将华;;铝合金筒形件磁脉冲校形研究[A];第三届十省区市机械工程学会科技论坛暨黑龙江省机械工程学会2007年年会论文(摘要)集[C];2007年
6 王雷刚;洪深泽;刘成刚;;安徽锻压的现状、发展趋势及建议[A];安徽省装备制造业发展论坛会论文集[C];2003年
7 王雷刚;洪深泽;刘成刚;;安徽锻压的现状、发展趋势及建议[A];安徽省机械工程学会成立40周年纪念册暨安徽省装备制造业发展论坛会议论文集(1963-2003)[C];2003年
8 齐铂金;从保强;杨明轩;李伟;王乐笑;;复合超高频脉冲VP-GTAW电弧压力及其焊接质量分析[A];第十六次全国焊接学术会议论文摘要集[C];2011年
9 李春峰;赵志衡;李忠;江洪伟;于海平;;管坯电磁胀形磁场特性及磁压力分布[A];第八届全国塑性加工学术年会论文集[C];2002年
中国博士学位论文全文数据库 前5条
1 初红艳;平板件电磁成形的质量保证技术的研究[D];北京工业大学;2003年
2 张丰收;特种合金软接触电磁成形定向凝固技术研究[D];西北工业大学;2003年
3 吴彦春;电磁压制设备研制及其在功能陶瓷制备中的应用研究[D];武汉理工大学;2007年
4 张志峰;钢电磁连续铸造技术的研究[D];大连理工大学;2002年
5 葛卫清;双丝脉冲MIG焊熔滴过渡分数阶控制的研究[D];华南理工大学;2012年
中国硕士学位论文全文数据库 前10条
1 张海涛;基于均匀压力线圈的镁合金板材电磁成形有限元模拟研究[D];武汉理工大学;2010年
2 何志磊;镁合金板材电磁成形的成形极限研究[D];武汉理工大学;2010年
3 胡婷婷;镁合金板材电磁成形的破裂准则及数值模拟研究[D];武汉理工大学;2011年
4 蔡衡;铝合金曲面板料电磁成形回弹实验研究[D];武汉理工大学;2012年
5 夏晓锋;高强钢板电磁成形实验研究[D];武汉理工大学;2011年
6 齐燕;温热电磁成形对镁合金显微组织的影响[D];武汉理工大学;2011年
7 陈石;难成形曲面零件的电磁辅助成形模拟研究[D];武汉理工大学;2010年
8 舒行军;电磁成形计算机仿真及工艺参数优化研究[D];武汉理工大学;2002年
9 曹海峰;电磁成形过程中三维流场的数值模拟[D];西北工业大学;2002年
10 彭桂林;γ-TiAl基金属间化合物电磁成形定向凝固及组织特性研究[D];西北工业大学;2004年
中国重要报纸全文数据库 前1条
1 夏杰生;电磁冶金领域的全能专家[N];中国冶金报;2009年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978