金属与均匀介质体散射的矩量法高效算法及应用
【摘要】:金属与均匀介质目标电磁散射特性的快速精确数值计算是计算电磁学中的一个重要研究课题。矩量法因其精确性、高效性及通用性,尤为适合求解此类问题。近年来,随着实际工程应用需求的增大,如何进一步提高矩量法的计算性能是亟需解决的关键问题。本文在充分了解、掌握矩量法各个关键环节的基础上,针对矩量法高效精确求解金属与均匀介质体散射以及工程应用问题,利用高阶基函数、新型BC函数以及构建高效预处理器,对矩量法高效算法展开了系统研究,并实现了一系列高效算法。在此基础上,将实现的矩量法高效精确算法应用于计算任意形状大尺寸粒子的光散射特性方面,为光学测量和大气气溶胶的气候效应研究等提供理论指导。
论文首先介绍了矩量法的发展历程并详细阐述其关键技术,从算子的性态出发,对均匀介质体不同面积分方程组合形式的精度和效率进行研究,为后续采用矩量法快速求解均匀介质体散射问题打下基础。
论文研究了高阶矩量法并实现了高阶技术在均匀介质体散射问题方面的应用。采用曲面三角形上定义的叠加型基函数大大减少了未知数的数量并实现高阶收敛。针对均匀介质体的高阶联合切向积分方程(CTF)迭代求解收敛慢甚至不收敛问题,通过研究高阶基函数以及CTF方程的离散矩阵元素的特点,提出了一种高效预处理构建方法。数值试验表明,采用此预处理方法的高阶CTF方程在保留CTF方程高精度与稳定性的基础上,具高效性。
传统的磁场积分方程离散因为存在高奇异性的单位算子离散误差,计算精度差。为解决此问题,本论文使用新型的BC函数作为试函数来进行离散求解。数值实验结果表明,采用此种方法可以明显的提高磁场积分方程求解的精确性。并结合多层快速多级子技术来加速求解,可用于计算分析大目标尺寸散射的问题。通过数值算例详细分析了几何单元形状选择以及目标大小对BC函数离散磁场积分方程精度和迭代收敛性的影响。
论文最后将基于并行多层快速多极子技术的电磁流混合场积分方程(JMCFIE)矩量法程序应用于求解任意形状电大尺寸粒子的光散射特性问题。通过一系列的数值实验研究了目标尺寸、形状和入射情况对粒子散射特性的影响,并给出物理分析。